Henrik Singmann, Daniel W Heck, Marius Barth, Edgar Erdfelder, Nina R Arnold, Frederik Aust, Jimmy Calanchini, Fabian E Gümüsdagli, Sebastian S Horn, David Kellen, Karl C Klauer, Dora Matzke, Franziska Meissner, Martha Michalkiewicz, Marie Luisa Schaper, Christoph Stahl, Beatrice G Kuhlmann, Julia Groß
{"title":"评估认知模型参数估计的稳健性:在多种估算方法中对多叉处理树模型进行元分析回顾。","authors":"Henrik Singmann, Daniel W Heck, Marius Barth, Edgar Erdfelder, Nina R Arnold, Frederik Aust, Jimmy Calanchini, Fabian E Gümüsdagli, Sebastian S Horn, David Kellen, Karl C Klauer, Dora Matzke, Franziska Meissner, Martha Michalkiewicz, Marie Luisa Schaper, Christoph Stahl, Beatrice G Kuhlmann, Julia Groß","doi":"10.1037/bul0000434","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive models for categorical data. Specifically, we examine the robustness of MPT model parameter estimates that arise from two important decisions: the level of data aggregation (complete-pooling, no-pooling, or partial-pooling) and the statistical framework (frequentist or Bayesian). These decisions span a <i>multiverse</i> of estimation methods. We synthesized the data from 13,956 participants (164 published data sets) with a meta-analytic strategy and analyzed the <i>magnitude of divergence</i> between estimation methods for the parameters of nine popular MPT models in psychology (e.g., process-dissociation, source monitoring). We further examined moderators as potential <i>sources of divergence</i>. We found that the absolute divergence between estimation methods was small on average (<.04; with MPT parameters ranging between 0 and 1); in some cases, however, divergence amounted to nearly the maximum possible range (.97). Divergence was partly explained by few moderators (e.g., the specific MPT model parameter, uncertainty in parameter estimation), but not by other plausible candidate moderators (e.g., parameter trade-offs, parameter correlations) or their interactions. Partial-pooling methods showed the smallest divergence within and across levels of pooling and thus seem to be an appropriate default method. Using MPT models as an example, we show how transparency and robustness can be increased in the field of cognitive modeling. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the robustness of parameter estimates in cognitive models: A meta-analytic review of multinomial processing tree models across the multiverse of estimation methods.\",\"authors\":\"Henrik Singmann, Daniel W Heck, Marius Barth, Edgar Erdfelder, Nina R Arnold, Frederik Aust, Jimmy Calanchini, Fabian E Gümüsdagli, Sebastian S Horn, David Kellen, Karl C Klauer, Dora Matzke, Franziska Meissner, Martha Michalkiewicz, Marie Luisa Schaper, Christoph Stahl, Beatrice G Kuhlmann, Julia Groß\",\"doi\":\"10.1037/bul0000434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive models for categorical data. Specifically, we examine the robustness of MPT model parameter estimates that arise from two important decisions: the level of data aggregation (complete-pooling, no-pooling, or partial-pooling) and the statistical framework (frequentist or Bayesian). These decisions span a <i>multiverse</i> of estimation methods. We synthesized the data from 13,956 participants (164 published data sets) with a meta-analytic strategy and analyzed the <i>magnitude of divergence</i> between estimation methods for the parameters of nine popular MPT models in psychology (e.g., process-dissociation, source monitoring). We further examined moderators as potential <i>sources of divergence</i>. We found that the absolute divergence between estimation methods was small on average (<.04; with MPT parameters ranging between 0 and 1); in some cases, however, divergence amounted to nearly the maximum possible range (.97). Divergence was partly explained by few moderators (e.g., the specific MPT model parameter, uncertainty in parameter estimation), but not by other plausible candidate moderators (e.g., parameter trade-offs, parameter correlations) or their interactions. Partial-pooling methods showed the smallest divergence within and across levels of pooling and thus seem to be an appropriate default method. Using MPT models as an example, we show how transparency and robustness can be increased in the field of cognitive modeling. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/bul0000434\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/bul0000434","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Evaluating the robustness of parameter estimates in cognitive models: A meta-analytic review of multinomial processing tree models across the multiverse of estimation methods.
Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive models for categorical data. Specifically, we examine the robustness of MPT model parameter estimates that arise from two important decisions: the level of data aggregation (complete-pooling, no-pooling, or partial-pooling) and the statistical framework (frequentist or Bayesian). These decisions span a multiverse of estimation methods. We synthesized the data from 13,956 participants (164 published data sets) with a meta-analytic strategy and analyzed the magnitude of divergence between estimation methods for the parameters of nine popular MPT models in psychology (e.g., process-dissociation, source monitoring). We further examined moderators as potential sources of divergence. We found that the absolute divergence between estimation methods was small on average (<.04; with MPT parameters ranging between 0 and 1); in some cases, however, divergence amounted to nearly the maximum possible range (.97). Divergence was partly explained by few moderators (e.g., the specific MPT model parameter, uncertainty in parameter estimation), but not by other plausible candidate moderators (e.g., parameter trade-offs, parameter correlations) or their interactions. Partial-pooling methods showed the smallest divergence within and across levels of pooling and thus seem to be an appropriate default method. Using MPT models as an example, we show how transparency and robustness can be increased in the field of cognitive modeling. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.