Di Huang, Wenjing Fan, Ruisen Dai, Yao Lu, Yanlin Liu, Yuyang Song, Yi Qin, Ying Su
{"title":"葡萄汁澄清处理对猕猴桃葡萄酒化学和感官特征的影响。","authors":"Di Huang, Wenjing Fan, Ruisen Dai, Yao Lu, Yanlin Liu, Yuyang Song, Yi Qin, Ying Su","doi":"10.1038/s41538-024-00280-z","DOIUrl":null,"url":null,"abstract":"This study examined the effect of various clarification treatments on the physicochemical properties, volatile compounds, and sensory attributes of kiwi wines produced from five different kiwifruit (Actinidia deliciosa) varieties. The degree of clarification had a minimal impact on physicochemical parameters, including the content of residual sugar, ethanol, volatile acid, titratable acidity (except for the kiwifruit variety ‘Qinmei’), and the pH value. However, wines made from unclarified juices (muddy juice and pulp) displayed a higher glycerol content than those made from clarified juices. The cluster heat map and principal component analyses (PCA) demonstrated that kiwi wines produced from clarified kiwi juices possessed a higher ester content, whereas muddy juice and pulp wines contained elevated levels of higher alcohols. Quantitative descriptive analysis (QDA) indicated that clarified juice wines outperformed muddy juice and pulp wines in terms of purity, typicality, harmony, intensity, and freshness, with negligible differences in terms of palate acidity. Moreover, the clarified juice wines featured more characteristic kiwi wine aromas (kiwifruit, passionfruit, and pineapple) compared with that of the muddy juice and pulp wines, which exhibited an increased grassy flavour. Although the 100-NTU kiwifruit juice-fermented wine did not show an advantage in the cluster heat map and PCA, it presented better freshness, typicality, and intensity in the QDA, as well as a more passionfruit aroma. Based on the orthogonal partial least-squares discriminant analysis, A. deliciosa ‘Xuxiang’ was deemed to be the most suitable variety for vinification. This study provides crucial insights for enhancing the production of high-quality kiwi wine.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-10"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00280-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of must clarification treatments on chemical and sensory profiles of kiwifruit wine\",\"authors\":\"Di Huang, Wenjing Fan, Ruisen Dai, Yao Lu, Yanlin Liu, Yuyang Song, Yi Qin, Ying Su\",\"doi\":\"10.1038/s41538-024-00280-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the effect of various clarification treatments on the physicochemical properties, volatile compounds, and sensory attributes of kiwi wines produced from five different kiwifruit (Actinidia deliciosa) varieties. The degree of clarification had a minimal impact on physicochemical parameters, including the content of residual sugar, ethanol, volatile acid, titratable acidity (except for the kiwifruit variety ‘Qinmei’), and the pH value. However, wines made from unclarified juices (muddy juice and pulp) displayed a higher glycerol content than those made from clarified juices. The cluster heat map and principal component analyses (PCA) demonstrated that kiwi wines produced from clarified kiwi juices possessed a higher ester content, whereas muddy juice and pulp wines contained elevated levels of higher alcohols. Quantitative descriptive analysis (QDA) indicated that clarified juice wines outperformed muddy juice and pulp wines in terms of purity, typicality, harmony, intensity, and freshness, with negligible differences in terms of palate acidity. Moreover, the clarified juice wines featured more characteristic kiwi wine aromas (kiwifruit, passionfruit, and pineapple) compared with that of the muddy juice and pulp wines, which exhibited an increased grassy flavour. Although the 100-NTU kiwifruit juice-fermented wine did not show an advantage in the cluster heat map and PCA, it presented better freshness, typicality, and intensity in the QDA, as well as a more passionfruit aroma. Based on the orthogonal partial least-squares discriminant analysis, A. deliciosa ‘Xuxiang’ was deemed to be the most suitable variety for vinification. This study provides crucial insights for enhancing the production of high-quality kiwi wine.\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41538-024-00280-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41538-024-00280-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00280-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of must clarification treatments on chemical and sensory profiles of kiwifruit wine
This study examined the effect of various clarification treatments on the physicochemical properties, volatile compounds, and sensory attributes of kiwi wines produced from five different kiwifruit (Actinidia deliciosa) varieties. The degree of clarification had a minimal impact on physicochemical parameters, including the content of residual sugar, ethanol, volatile acid, titratable acidity (except for the kiwifruit variety ‘Qinmei’), and the pH value. However, wines made from unclarified juices (muddy juice and pulp) displayed a higher glycerol content than those made from clarified juices. The cluster heat map and principal component analyses (PCA) demonstrated that kiwi wines produced from clarified kiwi juices possessed a higher ester content, whereas muddy juice and pulp wines contained elevated levels of higher alcohols. Quantitative descriptive analysis (QDA) indicated that clarified juice wines outperformed muddy juice and pulp wines in terms of purity, typicality, harmony, intensity, and freshness, with negligible differences in terms of palate acidity. Moreover, the clarified juice wines featured more characteristic kiwi wine aromas (kiwifruit, passionfruit, and pineapple) compared with that of the muddy juice and pulp wines, which exhibited an increased grassy flavour. Although the 100-NTU kiwifruit juice-fermented wine did not show an advantage in the cluster heat map and PCA, it presented better freshness, typicality, and intensity in the QDA, as well as a more passionfruit aroma. Based on the orthogonal partial least-squares discriminant analysis, A. deliciosa ‘Xuxiang’ was deemed to be the most suitable variety for vinification. This study provides crucial insights for enhancing the production of high-quality kiwi wine.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.