真菌生物合成金纳米粒子及其在 SERS 中的应用潜力。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-09-01 Epub Date: 2024-06-26 DOI:10.1007/s00449-024-03053-w
Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria
{"title":"真菌生物合成金纳米粒子及其在 SERS 中的应用潜力。","authors":"Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria","doi":"10.1007/s00449-024-03053-w","DOIUrl":null,"url":null,"abstract":"<p><p>Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of gold nanoparticles by fungi and its potential in SERS.\",\"authors\":\"Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria\",\"doi\":\"10.1007/s00449-024-03053-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03053-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03053-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用金纳米粒子(AuNPs)进行的表面增强拉曼光谱(SERS)在生物大分子和一些癌细胞的鉴定方面具有重要意义。为了寻找更环保的 NPs 合成替代品,我们评估了利用不同丝状真菌生产的 AuNPs 的 SERS 特性。AuNPs 是利用 Botrytis cinerea、Trichoderma atroviride、Trichoderma asperellum、Alternaria sp.和 Ganoderma sessile 的上清液合成的。紫外可见光谱(UV-Vis)对 AuNPs 进行了表征,以确定其特征性表面等离子体共振,其波长分别为 545 nm(B. cinerea)、550 nm(T. atroviride)、540 nm(T. asperellum)、530 nm(Alternaria sp.)和 525 nm(G. sessile)。通过透射电子显微镜(TEM)对形态、尺寸和晶体结构进行了表征;通过 Z 电位测量对胶体稳定性进行了评估。我们发现,在特定的培养条件下,可以获得球形和准球形的 AuNPs,其平均尺寸范围取决于真菌种类的上清液,分别为 92.9 nm(B. cinerea)、24.7 nm(T. atroviride)、16.4 nm(T. asperellum)、9.5 nm(Alternaria sp.)和 13.6 nm(G. sessile)。可以预见,这将对拉曼放大产生影响。我们使用波长为 532 nm 的微型拉曼光谱系统来评估 AuNPs 的 SERS 特征。我们选择亚甲基蓝作为目标分子,因为它在文献中已被广泛应用。我们的结果表明,用 T. atroviride、T. asperellum 和 Alternaria sp.的上清液合成的 AuNPs 产生了更强的 SERS 效果,增强因子(EF)分别为 20.9、28.8 和 35.46。这些结果很有希望,可以作为开发生物传感器的基础,提供一种方便、简单和低成本的绿色替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biosynthesis of gold nanoparticles by fungi and its potential in SERS.

Biosynthesis of gold nanoparticles by fungi and its potential in SERS.

Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信