Wei Wang, Yujun Deng, Shuai Sun, Massimiliano Galluzzi, Yang Jiao, Paul K. Chu, Zeren Li, Jia Li, Jianquan Yao
{"title":"基于 [1]Benzothieno[3,2-b]Benzothiophene (BTBT) 衍生物的有机可见光盲紫外光二极管和像素阵列成像仪","authors":"Wei Wang, Yujun Deng, Shuai Sun, Massimiliano Galluzzi, Yang Jiao, Paul K. Chu, Zeren Li, Jia Li, Jianquan Yao","doi":"10.1002/aelm.202400128","DOIUrl":null,"url":null,"abstract":"<p>Visible-blind ultraviolet (VBUV) photodetectors are designed for UV detection without responding to visible light, thus having many applications in communications, flame detection, environment monitoring, and astronomy. Herein, an organic device concept based on the bulk heterojunction (BHJ) photodiode is presented for high-performance VBUV photodetection and imaging. The BHJ, comprised of an organic electron donor, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), and an electron acceptor, indene-C<sub>60</sub> bisadduct (ICBA), shows efficient generation and transport of free charges upon UV irradiation. The organic photodiode (OPD) delivers exceptional VBUV photodetection performance. At a low voltage of −0.5 V, the device exhibits a wide linear dynamic range of 98.15 dB. Furthermore, the OPD can detect ultra-low light intensities down to 0.58 µW cm<sup>−2</sup> with a high photoresponsivity of 0.12 A W<sup>−1</sup> and specific detectivity of 2.75 × 10<sup>12</sup> Jones. More importantly, by integrating the OPD with a readout integrated circuit, the pixel-array organic VBUV imager is demonstrated to have high-quality imaging capability. The results reveal a novel strategy to design VBUV photodetectors and imagers with balanced performance, cost, area, flexibility, and power consumption.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400128","citationCount":"0","resultStr":"{\"title\":\"Organic Visible-Blind Ultraviolet Photodiodes and Pixel-Array Imagers Based on [1]Benzothieno[3,2-b]Benzothiophene (BTBT) Derivatives\",\"authors\":\"Wei Wang, Yujun Deng, Shuai Sun, Massimiliano Galluzzi, Yang Jiao, Paul K. Chu, Zeren Li, Jia Li, Jianquan Yao\",\"doi\":\"10.1002/aelm.202400128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visible-blind ultraviolet (VBUV) photodetectors are designed for UV detection without responding to visible light, thus having many applications in communications, flame detection, environment monitoring, and astronomy. Herein, an organic device concept based on the bulk heterojunction (BHJ) photodiode is presented for high-performance VBUV photodetection and imaging. The BHJ, comprised of an organic electron donor, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), and an electron acceptor, indene-C<sub>60</sub> bisadduct (ICBA), shows efficient generation and transport of free charges upon UV irradiation. The organic photodiode (OPD) delivers exceptional VBUV photodetection performance. At a low voltage of −0.5 V, the device exhibits a wide linear dynamic range of 98.15 dB. Furthermore, the OPD can detect ultra-low light intensities down to 0.58 µW cm<sup>−2</sup> with a high photoresponsivity of 0.12 A W<sup>−1</sup> and specific detectivity of 2.75 × 10<sup>12</sup> Jones. More importantly, by integrating the OPD with a readout integrated circuit, the pixel-array organic VBUV imager is demonstrated to have high-quality imaging capability. The results reveal a novel strategy to design VBUV photodetectors and imagers with balanced performance, cost, area, flexibility, and power consumption.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400128\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400128\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400128","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
可见光盲紫外(VBUV)光电探测器设计用于紫外检测,而不对可见光做出反应,因此在通信、火焰检测、环境监测和天文学等领域有着广泛的应用。本文介绍了一种基于体异质结(BHJ)光电二极管的有机器件概念,用于高性能紫外光检测和成像。BHJ 由有机电子供体 2,7-二辛基[1]苯并噻吩并[3,2-b][1]苯并噻吩(C8-BTBT)和电子受体茚-C60 双加合物(ICBA)组成,在紫外线照射下可高效产生和传输自由电荷。有机光电二极管(OPD)具有卓越的紫外光检测性能。在 -0.5 V 的低电压下,该器件具有 98.15 dB 的宽线性动态范围。此外,OPD 还能检测低至 0.58 µW cm-2 的超低光强,具有 0.12 A W-1 的高光致发光率和 2.75 × 1012 Jones 的比检测率。更重要的是,通过将 OPD 与读出集成电路集成,像素阵列有机 VBUV 成像仪被证明具有高质量的成像能力。研究结果揭示了一种设计 VBUV 光电探测器和成像器的新策略,可实现性能、成本、面积、灵活性和功耗之间的平衡。
Organic Visible-Blind Ultraviolet Photodiodes and Pixel-Array Imagers Based on [1]Benzothieno[3,2-b]Benzothiophene (BTBT) Derivatives
Visible-blind ultraviolet (VBUV) photodetectors are designed for UV detection without responding to visible light, thus having many applications in communications, flame detection, environment monitoring, and astronomy. Herein, an organic device concept based on the bulk heterojunction (BHJ) photodiode is presented for high-performance VBUV photodetection and imaging. The BHJ, comprised of an organic electron donor, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), and an electron acceptor, indene-C60 bisadduct (ICBA), shows efficient generation and transport of free charges upon UV irradiation. The organic photodiode (OPD) delivers exceptional VBUV photodetection performance. At a low voltage of −0.5 V, the device exhibits a wide linear dynamic range of 98.15 dB. Furthermore, the OPD can detect ultra-low light intensities down to 0.58 µW cm−2 with a high photoresponsivity of 0.12 A W−1 and specific detectivity of 2.75 × 1012 Jones. More importantly, by integrating the OPD with a readout integrated circuit, the pixel-array organic VBUV imager is demonstrated to have high-quality imaging capability. The results reveal a novel strategy to design VBUV photodetectors and imagers with balanced performance, cost, area, flexibility, and power consumption.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.