Joshua C Brown, Jamie Kweon, Prayushi Sharma, Shan H Siddiqi, Moshe Isserles, Kerry J Ressler
{"title":"严格评估 \"如何、在何处以及何时通过经颅磁刺激诱导创伤后应激障碍网络的可塑性 \"这一悬而未决的问题。","authors":"Joshua C Brown, Jamie Kweon, Prayushi Sharma, Shan H Siddiqi, Moshe Isserles, Kerry J Ressler","doi":"10.1016/j.biopsych.2024.06.010","DOIUrl":null,"url":null,"abstract":"<p><p>Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in posttraumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (TMS) is thought to work through long-term potentiation-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. In a recent failed randomized controlled trial we emphasized the necessity of correctly identifying cortical targets, the directionality of TMS protocols, and the role of memory activation. Here, we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature by searching for repetitive TMS clinical trials involving patients with PTSD and outcomes. We searched MEDLINE through October 25, 2023, for \"TMS and PTSD\" and \"transcranial magnetic stimulation and posttraumatic stress disorder.\" Thirty-one publications met our inclusion criteria (k = 17 randomized controlled trials, k = 14 open label). Randomized controlled trial protocols were varied in terms of TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority of low-frequency (k = 5) versus high-frequency (k = 6) protocols or by stimulation location. Memory provocation or exposure protocols (k = 7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critically Assessing the Unanswered Questions of How, Where, and When to Induce Plasticity in the Posttraumatic Stress Disorder Network With Transcranial Magnetic Stimulation.\",\"authors\":\"Joshua C Brown, Jamie Kweon, Prayushi Sharma, Shan H Siddiqi, Moshe Isserles, Kerry J Ressler\",\"doi\":\"10.1016/j.biopsych.2024.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in posttraumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (TMS) is thought to work through long-term potentiation-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. In a recent failed randomized controlled trial we emphasized the necessity of correctly identifying cortical targets, the directionality of TMS protocols, and the role of memory activation. Here, we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature by searching for repetitive TMS clinical trials involving patients with PTSD and outcomes. We searched MEDLINE through October 25, 2023, for \\\"TMS and PTSD\\\" and \\\"transcranial magnetic stimulation and posttraumatic stress disorder.\\\" Thirty-one publications met our inclusion criteria (k = 17 randomized controlled trials, k = 14 open label). Randomized controlled trial protocols were varied in terms of TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority of low-frequency (k = 5) versus high-frequency (k = 6) protocols or by stimulation location. Memory provocation or exposure protocols (k = 7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.06.010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.06.010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Critically Assessing the Unanswered Questions of How, Where, and When to Induce Plasticity in the Posttraumatic Stress Disorder Network With Transcranial Magnetic Stimulation.
Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in posttraumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (TMS) is thought to work through long-term potentiation-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. In a recent failed randomized controlled trial we emphasized the necessity of correctly identifying cortical targets, the directionality of TMS protocols, and the role of memory activation. Here, we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature by searching for repetitive TMS clinical trials involving patients with PTSD and outcomes. We searched MEDLINE through October 25, 2023, for "TMS and PTSD" and "transcranial magnetic stimulation and posttraumatic stress disorder." Thirty-one publications met our inclusion criteria (k = 17 randomized controlled trials, k = 14 open label). Randomized controlled trial protocols were varied in terms of TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority of low-frequency (k = 5) versus high-frequency (k = 6) protocols or by stimulation location. Memory provocation or exposure protocols (k = 7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.