{"title":"基于波段功率特征部分的卷积神经网络与非洲秃鹫优化促进了脑电图分类的信道选择。","authors":"Vairaprakash Selvaraj, Manjunathan Alagarsamy, Kavitha Datchanamoorthy, Geethalakshmi Manickam","doi":"10.1080/10255842.2024.2356633","DOIUrl":null,"url":null,"abstract":"<p><p>The electroencephalogram-based motor imagery (MI-EEG) classification task is significant for brain-computer interface (BCI). EEG signals need a lot of channels to be acquired, which makes it difficult to use in real-world applications. Choosing the optimal channel subset without severely impacting the classification performance is a problem in the field of BCI. To overwhelm this problem, a band power feature part-based convolutional neural network with African vulture optimization fostered channel selection for EEG classification (PCNNC-AVOACS-EEG) is proposed in this article. Initially, the input EEG signals are taken from BCI competition IV, dataset 1. Then the input EEG signals are pre-processed by contrast-limited adaptive histogram equalization filtering. These pre-processed EEG signals are extracted by hexadecimal local adaptive binary pattern (HLABP) method. This HLABP method extracts the features of alpha and beta bands from the EEG segments. Each EEG channel's band power data are utilized as features for a PCNNC to exactly classify the EEG into 3 classes: two MI states and idle state. The AVOA is applied within the band power feature PCNNC for channel selection, wherein channel selection aids to enhance the categorization accuracy on test set that is a vital indicator for real-time BCI applications. The proposed method is activated in python. From the experiment, the proposed technique attains 17.91%, 20.46% and 18.146% higher accuracy; 14.105%, 15.295% and 5.291% higher area under the curve and 70%, 60% and 65.714% lower computation time compared with the existing approaches.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"2003-2016"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band power feature part-based convolutional neural network with African vulture optimization fostered channel selection for EEG classification.\",\"authors\":\"Vairaprakash Selvaraj, Manjunathan Alagarsamy, Kavitha Datchanamoorthy, Geethalakshmi Manickam\",\"doi\":\"10.1080/10255842.2024.2356633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electroencephalogram-based motor imagery (MI-EEG) classification task is significant for brain-computer interface (BCI). EEG signals need a lot of channels to be acquired, which makes it difficult to use in real-world applications. Choosing the optimal channel subset without severely impacting the classification performance is a problem in the field of BCI. To overwhelm this problem, a band power feature part-based convolutional neural network with African vulture optimization fostered channel selection for EEG classification (PCNNC-AVOACS-EEG) is proposed in this article. Initially, the input EEG signals are taken from BCI competition IV, dataset 1. Then the input EEG signals are pre-processed by contrast-limited adaptive histogram equalization filtering. These pre-processed EEG signals are extracted by hexadecimal local adaptive binary pattern (HLABP) method. This HLABP method extracts the features of alpha and beta bands from the EEG segments. Each EEG channel's band power data are utilized as features for a PCNNC to exactly classify the EEG into 3 classes: two MI states and idle state. The AVOA is applied within the band power feature PCNNC for channel selection, wherein channel selection aids to enhance the categorization accuracy on test set that is a vital indicator for real-time BCI applications. The proposed method is activated in python. From the experiment, the proposed technique attains 17.91%, 20.46% and 18.146% higher accuracy; 14.105%, 15.295% and 5.291% higher area under the curve and 70%, 60% and 65.714% lower computation time compared with the existing approaches.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"2003-2016\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2356633\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2356633","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Band power feature part-based convolutional neural network with African vulture optimization fostered channel selection for EEG classification.
The electroencephalogram-based motor imagery (MI-EEG) classification task is significant for brain-computer interface (BCI). EEG signals need a lot of channels to be acquired, which makes it difficult to use in real-world applications. Choosing the optimal channel subset without severely impacting the classification performance is a problem in the field of BCI. To overwhelm this problem, a band power feature part-based convolutional neural network with African vulture optimization fostered channel selection for EEG classification (PCNNC-AVOACS-EEG) is proposed in this article. Initially, the input EEG signals are taken from BCI competition IV, dataset 1. Then the input EEG signals are pre-processed by contrast-limited adaptive histogram equalization filtering. These pre-processed EEG signals are extracted by hexadecimal local adaptive binary pattern (HLABP) method. This HLABP method extracts the features of alpha and beta bands from the EEG segments. Each EEG channel's band power data are utilized as features for a PCNNC to exactly classify the EEG into 3 classes: two MI states and idle state. The AVOA is applied within the band power feature PCNNC for channel selection, wherein channel selection aids to enhance the categorization accuracy on test set that is a vital indicator for real-time BCI applications. The proposed method is activated in python. From the experiment, the proposed technique attains 17.91%, 20.46% and 18.146% higher accuracy; 14.105%, 15.295% and 5.291% higher area under the curve and 70%, 60% and 65.714% lower computation time compared with the existing approaches.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.