基于深度学习的炎症性关节炎患者手部核磁共振成像中侵蚀、滑膜炎和骨炎的分类。

IF 5.1 2区 医学 Q1 RHEUMATOLOGY
Maja Schlereth, Melek Yalcin Mutlu, Jonas Utz, Sara Bayat, Tobias Heimann, Jingna Qiu, Chris Ehring, Chang Liu, Michael Uder, Arnd Kleyer, David Simon, Frank Roemer, Georg Schett, Katharina Breininger, Filippo Fagni
{"title":"基于深度学习的炎症性关节炎患者手部核磁共振成像中侵蚀、滑膜炎和骨炎的分类。","authors":"Maja Schlereth, Melek Yalcin Mutlu, Jonas Utz, Sara Bayat, Tobias Heimann, Jingna Qiu, Chris Ehring, Chang Liu, Michael Uder, Arnd Kleyer, David Simon, Frank Roemer, Georg Schett, Katharina Breininger, Filippo Fagni","doi":"10.1136/rmdopen-2024-004273","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis.</p><p><strong>Methods: </strong>Hand MRIs (coronal T1-weighted, T2-weighted fat-suppressed, T1-weighted fat-suppressed contrast-enhanced) of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients from the rheumatology department of the Erlangen University Hospital were assessed by two expert rheumatologists using the Outcome Measures in Rheumatology-validated RA MRI Scoring System and PsA MRI Scoring System scores and were used to train, validate and test CNNs to automatically score erosions, osteitis and synovitis. Scoring performance was compared with human annotations in terms of macro-area under the receiver operating characteristic curve (AUC) and balanced accuracy using fivefold cross-validation. Validation was performed on an independent dataset of MRIs from a second patient cohort.</p><p><strong>Results: </strong>In total, 211 MRIs from 112 patients (14 906 region of interests (ROIs)) were included for training/internal validation using cross-validation and 220 MRIs from 75 patients (11 040 ROIs) for external validation of the networks. The networks achieved high mean (SD) macro-AUC of 92%±1% for erosions, 91%±2% for osteitis and 85%±2% for synovitis. Compared with human annotation, CNNs achieved a high mean Spearman correlation for erosions (90±2%), osteitis (78±8%) and synovitis (69±7%), which remained consistent in the validation dataset.</p><p><strong>Conclusions: </strong>We developed a CNN-based automated scoring system that allowed a rapid grading of erosions, osteitis and synovitis with good diagnostic accuracy and using less MRI sequences compared with conventional scoring. This CNN-based approach may help develop standardised cost-efficient and time-efficient assessments of hand MRIs for patients with arthritis.</p>","PeriodicalId":21396,"journal":{"name":"RMD Open","volume":"10 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based classification of erosion, synovitis and osteitis in hand MRI of patients with inflammatory arthritis.\",\"authors\":\"Maja Schlereth, Melek Yalcin Mutlu, Jonas Utz, Sara Bayat, Tobias Heimann, Jingna Qiu, Chris Ehring, Chang Liu, Michael Uder, Arnd Kleyer, David Simon, Frank Roemer, Georg Schett, Katharina Breininger, Filippo Fagni\",\"doi\":\"10.1136/rmdopen-2024-004273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis.</p><p><strong>Methods: </strong>Hand MRIs (coronal T1-weighted, T2-weighted fat-suppressed, T1-weighted fat-suppressed contrast-enhanced) of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients from the rheumatology department of the Erlangen University Hospital were assessed by two expert rheumatologists using the Outcome Measures in Rheumatology-validated RA MRI Scoring System and PsA MRI Scoring System scores and were used to train, validate and test CNNs to automatically score erosions, osteitis and synovitis. Scoring performance was compared with human annotations in terms of macro-area under the receiver operating characteristic curve (AUC) and balanced accuracy using fivefold cross-validation. Validation was performed on an independent dataset of MRIs from a second patient cohort.</p><p><strong>Results: </strong>In total, 211 MRIs from 112 patients (14 906 region of interests (ROIs)) were included for training/internal validation using cross-validation and 220 MRIs from 75 patients (11 040 ROIs) for external validation of the networks. The networks achieved high mean (SD) macro-AUC of 92%±1% for erosions, 91%±2% for osteitis and 85%±2% for synovitis. Compared with human annotation, CNNs achieved a high mean Spearman correlation for erosions (90±2%), osteitis (78±8%) and synovitis (69±7%), which remained consistent in the validation dataset.</p><p><strong>Conclusions: </strong>We developed a CNN-based automated scoring system that allowed a rapid grading of erosions, osteitis and synovitis with good diagnostic accuracy and using less MRI sequences compared with conventional scoring. This CNN-based approach may help develop standardised cost-efficient and time-efficient assessments of hand MRIs for patients with arthritis.</p>\",\"PeriodicalId\":21396,\"journal\":{\"name\":\"RMD Open\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RMD Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/rmdopen-2024-004273\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RMD Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rmdopen-2024-004273","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的训练、测试和验证基于卷积神经网络(CNN)的方法的性能,以自动评估炎症性关节炎患者手部核磁共振成像中的骨侵蚀、骨炎和滑膜炎。方法埃尔兰根大学医院风湿病科的两名风湿病专家使用经风湿病学结果衡量标准(Outcome Measures in Rheumatology)验证的 RA MRI 评分系统和 PsA MRI 评分系统对类风湿性关节炎(RA)和银屑病关节炎(PsA)患者的手部 MRI(冠状 T1 加权、T2 加权脂肪抑制、T1 加权脂肪抑制对比增强)进行了评估,并用于训练、验证和测试 CNN、验证和测试 CNN,以自动对侵蚀、骨炎和滑膜炎进行评分。使用五倍交叉验证法,在接收器工作特征曲线下的宏观面积(AUC)和平衡准确性方面,将评分性能与人类注释进行了比较。在来自第二个患者群的独立磁共振成像数据集上进行了验证:共有 112 名患者的 211 个 MRI(14 906 个感兴趣区 (ROI))通过交叉验证进行了训练/内部验证,75 名患者的 220 个 MRI(11 040 个感兴趣区 (ROI))通过外部验证进行了网络验证。网络的平均(标度)宏观AUC较高,侵蚀为92%±1%,骨炎为91%±2%,滑膜炎为85%±2%。与人类注释相比,CNN 在侵蚀(90±2%)、骨炎(78±8%)和滑膜炎(69±7%)方面实现了较高的平均斯皮尔曼相关性,这在验证数据集中保持一致:我们开发了一种基于 CNN 的自动评分系统,与传统评分系统相比,该系统能快速对糜烂、骨炎和滑膜炎进行分级,且诊断准确性高,使用的 MRI 序列更少。这种基于 CNN 的方法可能有助于为关节炎患者开发具有成本效益和时间效率的标准化手部 MRI 评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based classification of erosion, synovitis and osteitis in hand MRI of patients with inflammatory arthritis.

Objectives: To train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis.

Methods: Hand MRIs (coronal T1-weighted, T2-weighted fat-suppressed, T1-weighted fat-suppressed contrast-enhanced) of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients from the rheumatology department of the Erlangen University Hospital were assessed by two expert rheumatologists using the Outcome Measures in Rheumatology-validated RA MRI Scoring System and PsA MRI Scoring System scores and were used to train, validate and test CNNs to automatically score erosions, osteitis and synovitis. Scoring performance was compared with human annotations in terms of macro-area under the receiver operating characteristic curve (AUC) and balanced accuracy using fivefold cross-validation. Validation was performed on an independent dataset of MRIs from a second patient cohort.

Results: In total, 211 MRIs from 112 patients (14 906 region of interests (ROIs)) were included for training/internal validation using cross-validation and 220 MRIs from 75 patients (11 040 ROIs) for external validation of the networks. The networks achieved high mean (SD) macro-AUC of 92%±1% for erosions, 91%±2% for osteitis and 85%±2% for synovitis. Compared with human annotation, CNNs achieved a high mean Spearman correlation for erosions (90±2%), osteitis (78±8%) and synovitis (69±7%), which remained consistent in the validation dataset.

Conclusions: We developed a CNN-based automated scoring system that allowed a rapid grading of erosions, osteitis and synovitis with good diagnostic accuracy and using less MRI sequences compared with conventional scoring. This CNN-based approach may help develop standardised cost-efficient and time-efficient assessments of hand MRIs for patients with arthritis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RMD Open
RMD Open RHEUMATOLOGY-
CiteScore
7.30
自引率
6.50%
发文量
205
审稿时长
14 weeks
期刊介绍: RMD Open publishes high quality peer-reviewed original research covering the full spectrum of musculoskeletal disorders, rheumatism and connective tissue diseases, including osteoporosis, spine and rehabilitation. Clinical and epidemiological research, basic and translational medicine, interesting clinical cases, and smaller studies that add to the literature are all considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信