Haidong Teng , Jingheng Shu , Hedi Ma , Bingmei Shao , Zhan Liu
{"title":"健康成年人吞咽时颞下颌关节的运动重建和有限元分析","authors":"Haidong Teng , Jingheng Shu , Hedi Ma , Bingmei Shao , Zhan Liu","doi":"10.1016/j.medengphy.2024.104195","DOIUrl":null,"url":null,"abstract":"<div><p>There is a close physiological connection between swallowing and the temporomandibular joint (TMJ). However, a shortage of quantitative research on the biomechanical behavior of the TMJ during swallowing exists. The purpose of this study was to reconstruct the movement of the temporomandibular joint (TMJ) based on in vivo experiment and analyze the biomechanical responses during swallowing in healthy adults to investigate the role of the TMJ in swallowing. Motion capture of swallowing, computed tomography (CT), and magnet resonance images (MRI) were performed on six healthy subjects. The movements of the TMJ during swallowing were reconstructed from the motion capture data. The three-dimensional finite element model was constructed. The dynamic finite element analysis of the swallowing process was performed based on the motion data. The range of condylar displacement was within 1 mm in all subjects. The left and right condyle movements were asymmetrical in two-thirds of the subjects. The peak stresses of the discs were relatively low, with a maximum of 0.11 MPa. During swallowing, the condylar displacement showed two trends: slow retraction and slow extension. The tendency to extend could lead to a gradual increase in stress on the disc.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion reconstruction and finite element analysis of the temporomandibular joint during swallowing in healthy adults\",\"authors\":\"Haidong Teng , Jingheng Shu , Hedi Ma , Bingmei Shao , Zhan Liu\",\"doi\":\"10.1016/j.medengphy.2024.104195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a close physiological connection between swallowing and the temporomandibular joint (TMJ). However, a shortage of quantitative research on the biomechanical behavior of the TMJ during swallowing exists. The purpose of this study was to reconstruct the movement of the temporomandibular joint (TMJ) based on in vivo experiment and analyze the biomechanical responses during swallowing in healthy adults to investigate the role of the TMJ in swallowing. Motion capture of swallowing, computed tomography (CT), and magnet resonance images (MRI) were performed on six healthy subjects. The movements of the TMJ during swallowing were reconstructed from the motion capture data. The three-dimensional finite element model was constructed. The dynamic finite element analysis of the swallowing process was performed based on the motion data. The range of condylar displacement was within 1 mm in all subjects. The left and right condyle movements were asymmetrical in two-thirds of the subjects. The peak stresses of the discs were relatively low, with a maximum of 0.11 MPa. During swallowing, the condylar displacement showed two trends: slow retraction and slow extension. The tendency to extend could lead to a gradual increase in stress on the disc.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000961\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000961","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Motion reconstruction and finite element analysis of the temporomandibular joint during swallowing in healthy adults
There is a close physiological connection between swallowing and the temporomandibular joint (TMJ). However, a shortage of quantitative research on the biomechanical behavior of the TMJ during swallowing exists. The purpose of this study was to reconstruct the movement of the temporomandibular joint (TMJ) based on in vivo experiment and analyze the biomechanical responses during swallowing in healthy adults to investigate the role of the TMJ in swallowing. Motion capture of swallowing, computed tomography (CT), and magnet resonance images (MRI) were performed on six healthy subjects. The movements of the TMJ during swallowing were reconstructed from the motion capture data. The three-dimensional finite element model was constructed. The dynamic finite element analysis of the swallowing process was performed based on the motion data. The range of condylar displacement was within 1 mm in all subjects. The left and right condyle movements were asymmetrical in two-thirds of the subjects. The peak stresses of the discs were relatively low, with a maximum of 0.11 MPa. During swallowing, the condylar displacement showed two trends: slow retraction and slow extension. The tendency to extend could lead to a gradual increase in stress on the disc.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.