镁离子和硫酸根离子存在时外延方解石形态的改变

IF 1.5 4区 材料科学 Q3 Chemistry
Hassiba Tighidet, Suzanne Joiret, Nabila Cherchour, Naima Brinis, Kahina Aoudia
{"title":"镁离子和硫酸根离子存在时外延方解石形态的改变","authors":"Hassiba Tighidet,&nbsp;Suzanne Joiret,&nbsp;Nabila Cherchour,&nbsp;Naima Brinis,&nbsp;Kahina Aoudia","doi":"10.1002/crat.202400044","DOIUrl":null,"url":null,"abstract":"<p>Magnesium and sulfate are a determinant key in CaCO<sub>3</sub> mineralization. However, the works of the literature have failed to provide a clear understanding of how these ions influence the nucleation-growth of CaCO<sub>3</sub> precipitation. Our study uses an electrochemical method, having for principle to impose a dissolved oxygen reduction potential on gold (111) films. This technique that allows the exclusive and controlled crystallization of epitaxial calcite established an ideal system for the study of foreign ions influence. The polymorph, composition and morphology of crystals are characterized using scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results demonstrate that the increase of calcium concentration in calcocarbonic pure solution enhances the nucleation and then the growth of calcite crystals without affecting their morphology and their orientation. However, the magnesium directly modifies the surface morphology of calcite as a consequence of Mg substitution to calcium ions and the inhibitive effect of magnesium is assured by an incorporation mechanism. In the matter of sulfate ions influence, the experimental results indicate that SO<sub>4</sub><sup>2−</sup> slows down the epitaxial calcite nucleation by substituting itself to carbonate ions preferentially in the center of the crystals facets causing an enlargement of the lattice parameter.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epitaxial Calcite Morphology Modified in the Presence of Magnesium and Sulfate Ions\",\"authors\":\"Hassiba Tighidet,&nbsp;Suzanne Joiret,&nbsp;Nabila Cherchour,&nbsp;Naima Brinis,&nbsp;Kahina Aoudia\",\"doi\":\"10.1002/crat.202400044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnesium and sulfate are a determinant key in CaCO<sub>3</sub> mineralization. However, the works of the literature have failed to provide a clear understanding of how these ions influence the nucleation-growth of CaCO<sub>3</sub> precipitation. Our study uses an electrochemical method, having for principle to impose a dissolved oxygen reduction potential on gold (111) films. This technique that allows the exclusive and controlled crystallization of epitaxial calcite established an ideal system for the study of foreign ions influence. The polymorph, composition and morphology of crystals are characterized using scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results demonstrate that the increase of calcium concentration in calcocarbonic pure solution enhances the nucleation and then the growth of calcite crystals without affecting their morphology and their orientation. However, the magnesium directly modifies the surface morphology of calcite as a consequence of Mg substitution to calcium ions and the inhibitive effect of magnesium is assured by an incorporation mechanism. In the matter of sulfate ions influence, the experimental results indicate that SO<sub>4</sub><sup>2−</sup> slows down the epitaxial calcite nucleation by substituting itself to carbonate ions preferentially in the center of the crystals facets causing an enlargement of the lattice parameter.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400044\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

镁和硫酸盐是 CaCO3 矿化的决定性关键因素。然而,文献研究未能清楚地了解这些离子如何影响 CaCO3 沉淀的成核-生长。我们的研究采用了一种电化学方法,其原理是在金(111)薄膜上施加溶解氧还原电位。这种技术允许外延方解石的独家可控结晶,为研究外来离子的影响建立了一个理想的系统。利用扫描电子显微镜(SEM)、X 射线能量色散光谱(EDS)和拉曼光谱对晶体的多晶体、成分和形态进行了表征。结果表明,钙碳酸盐纯溶液中钙浓度的增加会促进方解石晶体的成核和生长,但不会影响其形态和取向。然而,由于镁对钙离子的替代作用,镁直接改变了方解石的表面形态,而镁的抑制作用是通过一种结合机制来保证的。在硫酸根离子的影响方面,实验结果表明,SO42- 在晶体面中心优先取代碳酸根离子,导致晶格参数增大,从而减缓了方解石的外延成核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Epitaxial Calcite Morphology Modified in the Presence of Magnesium and Sulfate Ions

Epitaxial Calcite Morphology Modified in the Presence of Magnesium and Sulfate Ions

Magnesium and sulfate are a determinant key in CaCO3 mineralization. However, the works of the literature have failed to provide a clear understanding of how these ions influence the nucleation-growth of CaCO3 precipitation. Our study uses an electrochemical method, having for principle to impose a dissolved oxygen reduction potential on gold (111) films. This technique that allows the exclusive and controlled crystallization of epitaxial calcite established an ideal system for the study of foreign ions influence. The polymorph, composition and morphology of crystals are characterized using scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results demonstrate that the increase of calcium concentration in calcocarbonic pure solution enhances the nucleation and then the growth of calcite crystals without affecting their morphology and their orientation. However, the magnesium directly modifies the surface morphology of calcite as a consequence of Mg substitution to calcium ions and the inhibitive effect of magnesium is assured by an incorporation mechanism. In the matter of sulfate ions influence, the experimental results indicate that SO42− slows down the epitaxial calcite nucleation by substituting itself to carbonate ions preferentially in the center of the crystals facets causing an enlargement of the lattice parameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信