{"title":"新型胆固醇 24- 羟化酶抑制剂索替列司他在急性和慢性神经变性模型中的特性分析","authors":"","doi":"10.1016/j.neures.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated whether soticlestat (TAK-935), a newly discovered cholesterol 24-hydroxylase (CH24H) inhibitor now in phase 3 clinical trials for Dravet and Lennox-Gastaut syndromes, has effects on neurodegeneration in both chronic and acute animal models associated with glutamate hyperexcitation. Soticlestat was administered at doses that approximately halve 24S-hydroxycholesterol in both experiments. In the kainic acid (KA)-induced acute hippocampal degeneration model, soticlestat ameliorated inflammatory cytokine expression, hippocampal degeneration, and memory impairment. We ruled out the possibility that soticlestat directly interferes with KA binding to the KA receptor, or that 24S-hydroxycholesterol modulates KA receptor signaling, by conducting receptor binding and cell death assays. In the PS19 chronic degeneration model of tauopathy, treatment effects were observed in neurodegeneration markers. Notably, there was a significant correlation between the levels of brain 24S-hydroxycholesterol and a proinflammatory cytokine, tumor necrosis factor-α, which is implicated in cognitive decline and lowering of seizure threshold. This is the first study demonstrating that CH24H inhibition can alleviate neurodegeneration concomitant with neuroinflammation. Herein, we discuss the interplay among 24S-hydroxycholesterol production, neuroinflammation, and excitotoxicity. Effects on neurodegeneration and neuroinflammation demonstrated in two preclinical models suggest that soticlestat is effective in ameliorating seizures and addressing cognitive dysfunction in seizure disorders.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 29-38"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of soticlestat, a novel cholesterol 24-hydroxylase inhibitor, in acute and chronic neurodegeneration models\",\"authors\":\"\",\"doi\":\"10.1016/j.neures.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigated whether soticlestat (TAK-935), a newly discovered cholesterol 24-hydroxylase (CH24H) inhibitor now in phase 3 clinical trials for Dravet and Lennox-Gastaut syndromes, has effects on neurodegeneration in both chronic and acute animal models associated with glutamate hyperexcitation. Soticlestat was administered at doses that approximately halve 24S-hydroxycholesterol in both experiments. In the kainic acid (KA)-induced acute hippocampal degeneration model, soticlestat ameliorated inflammatory cytokine expression, hippocampal degeneration, and memory impairment. We ruled out the possibility that soticlestat directly interferes with KA binding to the KA receptor, or that 24S-hydroxycholesterol modulates KA receptor signaling, by conducting receptor binding and cell death assays. In the PS19 chronic degeneration model of tauopathy, treatment effects were observed in neurodegeneration markers. Notably, there was a significant correlation between the levels of brain 24S-hydroxycholesterol and a proinflammatory cytokine, tumor necrosis factor-α, which is implicated in cognitive decline and lowering of seizure threshold. This is the first study demonstrating that CH24H inhibition can alleviate neurodegeneration concomitant with neuroinflammation. Herein, we discuss the interplay among 24S-hydroxycholesterol production, neuroinflammation, and excitotoxicity. Effects on neurodegeneration and neuroinflammation demonstrated in two preclinical models suggest that soticlestat is effective in ameliorating seizures and addressing cognitive dysfunction in seizure disorders.</div></div>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\"208 \",\"pages\":\"Pages 29-38\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168010224000774\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010224000774","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Characterization of soticlestat, a novel cholesterol 24-hydroxylase inhibitor, in acute and chronic neurodegeneration models
We investigated whether soticlestat (TAK-935), a newly discovered cholesterol 24-hydroxylase (CH24H) inhibitor now in phase 3 clinical trials for Dravet and Lennox-Gastaut syndromes, has effects on neurodegeneration in both chronic and acute animal models associated with glutamate hyperexcitation. Soticlestat was administered at doses that approximately halve 24S-hydroxycholesterol in both experiments. In the kainic acid (KA)-induced acute hippocampal degeneration model, soticlestat ameliorated inflammatory cytokine expression, hippocampal degeneration, and memory impairment. We ruled out the possibility that soticlestat directly interferes with KA binding to the KA receptor, or that 24S-hydroxycholesterol modulates KA receptor signaling, by conducting receptor binding and cell death assays. In the PS19 chronic degeneration model of tauopathy, treatment effects were observed in neurodegeneration markers. Notably, there was a significant correlation between the levels of brain 24S-hydroxycholesterol and a proinflammatory cytokine, tumor necrosis factor-α, which is implicated in cognitive decline and lowering of seizure threshold. This is the first study demonstrating that CH24H inhibition can alleviate neurodegeneration concomitant with neuroinflammation. Herein, we discuss the interplay among 24S-hydroxycholesterol production, neuroinflammation, and excitotoxicity. Effects on neurodegeneration and neuroinflammation demonstrated in two preclinical models suggest that soticlestat is effective in ameliorating seizures and addressing cognitive dysfunction in seizure disorders.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.