Guiru Zhao, Tongxin An, Zhiwei Fan, Kaixian Wu, Kai Lv, Feng Zhou, Bozhi Wu, Michael A. Fullen
{"title":"中国西南侵蚀坡耕地土壤微生物群对氮输入的响应","authors":"Guiru Zhao, Tongxin An, Zhiwei Fan, Kaixian Wu, Kai Lv, Feng Zhou, Bozhi Wu, Michael A. Fullen","doi":"10.1002/fes3.557","DOIUrl":null,"url":null,"abstract":"<p>Maintaining soil productivity and sustainability remains a challenge in the face of a changing global agricultural framework, which includes the primary threat of soil degradation in many regions. Although soil erosion contributes to land degradation, how reductions in fertiliser nitrogen (N) affect erosion and soil microbial communities in sloped farmland remains unclear. In this study, effects of reductions in fertiliser N from 300 kg ha<sup>−1</sup> (N1) to 225 kg ha<sup>−1</sup> (N2), 150 kg ha<sup>−1</sup> (N3), and 75 kg ha<sup>−1</sup> (N4) on runoff, sediment yield and microbial community structure were evaluated in 12 maize farmlands with a 10° slope in Southwest China. Soil chemical properties were analyzed, and bacterial 16S rRNA and fungal ITS1 were sequenced from extracted DNA. Runoff and sediment yield in maize were significantly lower in N1 and N2 than in N3 and N4 (<i>p</i> < 0.05). The microbial diversity was higher in N1 and N2 than in N3 and N4. The severe erosion associated with reductions in N input resulted in significant decreases in abundances of the bacterial phyla <i>Proteobacteria</i>, <i>Bacteroidetes</i>, <i>Chloroflexi</i>, <i>Gemmatimonadetes</i>, <i>Firmicutes</i>, and <i>Nitrospirae</i> and fungal phyla Basidiomycota, Mortierellomycota, and Olpidiomycota. By contrast, abundances of the phyla <i>Acidobacteria</i> (bacteria) and Ascomycota and Glomeromycota (fungi) increased significantly with severe erosion. Distance-based redundancy analysis indicated that cation exchange capacity, organic matter, and nitrate strongly influenced structure of bacterial and fungal communities. Reductions >25% in N fertiliser (N3 and N4) did not meet crop N requirements, and because of the reduction in surface coverage, soil erosion was exacerbated, and soil fertility and diversity and complexity of microbial communities decreased. The results elucidated effects of N input on soil erosion and soil microbiomes in a sloped agroecosystem with the aim to rehabilitate or restore degraded land and increase sustainable agriculture development.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.557","citationCount":"0","resultStr":"{\"title\":\"Responses of soil microbiome to nitrogen input on eroded slope farmland in Southwest China\",\"authors\":\"Guiru Zhao, Tongxin An, Zhiwei Fan, Kaixian Wu, Kai Lv, Feng Zhou, Bozhi Wu, Michael A. Fullen\",\"doi\":\"10.1002/fes3.557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maintaining soil productivity and sustainability remains a challenge in the face of a changing global agricultural framework, which includes the primary threat of soil degradation in many regions. Although soil erosion contributes to land degradation, how reductions in fertiliser nitrogen (N) affect erosion and soil microbial communities in sloped farmland remains unclear. In this study, effects of reductions in fertiliser N from 300 kg ha<sup>−1</sup> (N1) to 225 kg ha<sup>−1</sup> (N2), 150 kg ha<sup>−1</sup> (N3), and 75 kg ha<sup>−1</sup> (N4) on runoff, sediment yield and microbial community structure were evaluated in 12 maize farmlands with a 10° slope in Southwest China. Soil chemical properties were analyzed, and bacterial 16S rRNA and fungal ITS1 were sequenced from extracted DNA. Runoff and sediment yield in maize were significantly lower in N1 and N2 than in N3 and N4 (<i>p</i> < 0.05). The microbial diversity was higher in N1 and N2 than in N3 and N4. The severe erosion associated with reductions in N input resulted in significant decreases in abundances of the bacterial phyla <i>Proteobacteria</i>, <i>Bacteroidetes</i>, <i>Chloroflexi</i>, <i>Gemmatimonadetes</i>, <i>Firmicutes</i>, and <i>Nitrospirae</i> and fungal phyla Basidiomycota, Mortierellomycota, and Olpidiomycota. By contrast, abundances of the phyla <i>Acidobacteria</i> (bacteria) and Ascomycota and Glomeromycota (fungi) increased significantly with severe erosion. Distance-based redundancy analysis indicated that cation exchange capacity, organic matter, and nitrate strongly influenced structure of bacterial and fungal communities. Reductions >25% in N fertiliser (N3 and N4) did not meet crop N requirements, and because of the reduction in surface coverage, soil erosion was exacerbated, and soil fertility and diversity and complexity of microbial communities decreased. The results elucidated effects of N input on soil erosion and soil microbiomes in a sloped agroecosystem with the aim to rehabilitate or restore degraded land and increase sustainable agriculture development.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.557\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.557\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.557","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Responses of soil microbiome to nitrogen input on eroded slope farmland in Southwest China
Maintaining soil productivity and sustainability remains a challenge in the face of a changing global agricultural framework, which includes the primary threat of soil degradation in many regions. Although soil erosion contributes to land degradation, how reductions in fertiliser nitrogen (N) affect erosion and soil microbial communities in sloped farmland remains unclear. In this study, effects of reductions in fertiliser N from 300 kg ha−1 (N1) to 225 kg ha−1 (N2), 150 kg ha−1 (N3), and 75 kg ha−1 (N4) on runoff, sediment yield and microbial community structure were evaluated in 12 maize farmlands with a 10° slope in Southwest China. Soil chemical properties were analyzed, and bacterial 16S rRNA and fungal ITS1 were sequenced from extracted DNA. Runoff and sediment yield in maize were significantly lower in N1 and N2 than in N3 and N4 (p < 0.05). The microbial diversity was higher in N1 and N2 than in N3 and N4. The severe erosion associated with reductions in N input resulted in significant decreases in abundances of the bacterial phyla Proteobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Firmicutes, and Nitrospirae and fungal phyla Basidiomycota, Mortierellomycota, and Olpidiomycota. By contrast, abundances of the phyla Acidobacteria (bacteria) and Ascomycota and Glomeromycota (fungi) increased significantly with severe erosion. Distance-based redundancy analysis indicated that cation exchange capacity, organic matter, and nitrate strongly influenced structure of bacterial and fungal communities. Reductions >25% in N fertiliser (N3 and N4) did not meet crop N requirements, and because of the reduction in surface coverage, soil erosion was exacerbated, and soil fertility and diversity and complexity of microbial communities decreased. The results elucidated effects of N input on soil erosion and soil microbiomes in a sloped agroecosystem with the aim to rehabilitate or restore degraded land and increase sustainable agriculture development.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology