用生物酶介导的水蒸馏法(BMHD)从薄荷叶中提取薄荷油:提高产量和薄荷醇含量。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-09-01 Epub Date: 2024-06-14 DOI:10.1007/s00449-024-03041-0
Sunidhi Thakiyal, Surekha Bhatia, Charanjeet Kaur, Urmila Gupta Phutela, Mohammed Shafiq Alam, Rohit Sharma
{"title":"用生物酶介导的水蒸馏法(BMHD)从薄荷叶中提取薄荷油:提高产量和薄荷醇含量。","authors":"Sunidhi Thakiyal, Surekha Bhatia, Charanjeet Kaur, Urmila Gupta Phutela, Mohammed Shafiq Alam, Rohit Sharma","doi":"10.1007/s00449-024-03041-0","DOIUrl":null,"url":null,"abstract":"<p><p>The present study optimized pre-treatment conditions for bioenzyme-mediated hydro-distillation (BMHD) for extraction of mint oil from mentha leaves and the results were compared with those of traditional hydro-distillation (HD) method using response surface methodology. The bio-enzymes produced from moringa leaves had maximum pectinase activity (287.04 µg of sugar/min/ml) followed by xylanase (87.78 µg of sugar/min/ml) while endoglucanase, exoglucanase and amylase activities were comparatively low. The optimized conditions for HD were 69.08 temperature for 173.70 min with water:sample of 10.0. The optimized conditions for enzyme pre-treatment of mentha leaves by BMHD were enzyme concentration of 8%, for a period of 120 min at an incubation period of 40 ℃. The yield (%) and menthol content (%) of the oil at optimized conditions by HD were 1.55 ml/100 g of sample and 56.40% menthol content, respectively, and for BMHD the yield and menthol content (%) of the oil at optimized conditions were 3.69% and 72.80%, respectively. It was found that BMHD leads to a 130% increase in the yield of mint oil and a 10% increase in menthol content as compared to the HD method. No significant difference in physical parameters was observed in mint oil extracted via both methods. Therefore, BMHD is a cost-effective and sustainable approach having an edge over the HD method without compromising the quality and could be a viable approach for commercial purposes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1471-1482"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioenzyme mediated hydrodistillation (BMHD) for extraction of mint oil from mentha leaves: improvement in yield and menthol content.\",\"authors\":\"Sunidhi Thakiyal, Surekha Bhatia, Charanjeet Kaur, Urmila Gupta Phutela, Mohammed Shafiq Alam, Rohit Sharma\",\"doi\":\"10.1007/s00449-024-03041-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study optimized pre-treatment conditions for bioenzyme-mediated hydro-distillation (BMHD) for extraction of mint oil from mentha leaves and the results were compared with those of traditional hydro-distillation (HD) method using response surface methodology. The bio-enzymes produced from moringa leaves had maximum pectinase activity (287.04 µg of sugar/min/ml) followed by xylanase (87.78 µg of sugar/min/ml) while endoglucanase, exoglucanase and amylase activities were comparatively low. The optimized conditions for HD were 69.08 temperature for 173.70 min with water:sample of 10.0. The optimized conditions for enzyme pre-treatment of mentha leaves by BMHD were enzyme concentration of 8%, for a period of 120 min at an incubation period of 40 ℃. The yield (%) and menthol content (%) of the oil at optimized conditions by HD were 1.55 ml/100 g of sample and 56.40% menthol content, respectively, and for BMHD the yield and menthol content (%) of the oil at optimized conditions were 3.69% and 72.80%, respectively. It was found that BMHD leads to a 130% increase in the yield of mint oil and a 10% increase in menthol content as compared to the HD method. No significant difference in physical parameters was observed in mint oil extracted via both methods. Therefore, BMHD is a cost-effective and sustainable approach having an edge over the HD method without compromising the quality and could be a viable approach for commercial purposes.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1471-1482\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03041-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03041-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究对生物酶介导的水蒸馏法(BMHD)从薄荷叶中提取薄荷油的预处理条件进行了优化,并采用响应面法将结果与传统的水蒸馏法(HD)进行了比较。从薄荷叶中提取的生物酶具有最高的果胶酶活性(287.04 微克糖/分钟/毫升),其次是木聚糖酶(87.78 微克糖/分钟/毫升),而内切葡聚糖酶、外切葡聚糖酶和淀粉酶活性相对较低。HD 的优化条件为 69.08 摄氏度,173.70 分钟,水与样品的比例为 10.0。用 BMHD 对薄荷叶进行酶预处理的最佳条件是酶浓度为 8%,孵育期为 40 ℃,时间为 120 分钟。在最佳条件下,HD 的产油量(%)和薄荷醇含量(%)分别为 1.55 毫升/100 克样品和 56.40% 的薄荷醇含量;而在最佳条件下,BMHD 的产油量和薄荷醇含量(%)分别为 3.69% 和 72.80%。与 HD 法相比,BMHD 法的薄荷油产量提高了 130%,薄荷醇含量提高了 10%。两种方法提取的薄荷油在物理参数上没有明显差异。因此,BMHD 是一种具有成本效益和可持续发展的方法,与 HD 方法相比,它在不影响质量的情况下具有优势,可以作为商业用途的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioenzyme mediated hydrodistillation (BMHD) for extraction of mint oil from mentha leaves: improvement in yield and menthol content.

Bioenzyme mediated hydrodistillation (BMHD) for extraction of mint oil from mentha leaves: improvement in yield and menthol content.

The present study optimized pre-treatment conditions for bioenzyme-mediated hydro-distillation (BMHD) for extraction of mint oil from mentha leaves and the results were compared with those of traditional hydro-distillation (HD) method using response surface methodology. The bio-enzymes produced from moringa leaves had maximum pectinase activity (287.04 µg of sugar/min/ml) followed by xylanase (87.78 µg of sugar/min/ml) while endoglucanase, exoglucanase and amylase activities were comparatively low. The optimized conditions for HD were 69.08 temperature for 173.70 min with water:sample of 10.0. The optimized conditions for enzyme pre-treatment of mentha leaves by BMHD were enzyme concentration of 8%, for a period of 120 min at an incubation period of 40 ℃. The yield (%) and menthol content (%) of the oil at optimized conditions by HD were 1.55 ml/100 g of sample and 56.40% menthol content, respectively, and for BMHD the yield and menthol content (%) of the oil at optimized conditions were 3.69% and 72.80%, respectively. It was found that BMHD leads to a 130% increase in the yield of mint oil and a 10% increase in menthol content as compared to the HD method. No significant difference in physical parameters was observed in mint oil extracted via both methods. Therefore, BMHD is a cost-effective and sustainable approach having an edge over the HD method without compromising the quality and could be a viable approach for commercial purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信