{"title":"优化的作物-畜牧系统可在中国次流域层面实现安全公正的地球磷边界","authors":"Ling Liu, Zhaohai Bai, Jing Yang, Zengwei Yuan, Fei Lun, Mengru Wang, Maryna Strokal, Carolien Kroeze, Zhenling Cui, Xinping Chen, Lin Ma","doi":"10.1038/s43016-024-00977-0","DOIUrl":null,"url":null,"abstract":"The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country’s well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China’s crop–livestock system is responsible for exceeding what is considered a ‘just’ threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a ‘safe’ water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop–livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050. Sustainable phosphorus (P) management is central to food security and a healthy environment. This study quantifies the impacts of crop–livestock production on P use and losses at the sub-basin scale in China and evaluates the exceedance of a ‘safe’ and ‘just’ P planetary boundary.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"5 6","pages":"499-512"},"PeriodicalIF":23.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized crop–livestock system can achieve a safe and just planetary boundary for phosphorus at the sub-basin level in China\",\"authors\":\"Ling Liu, Zhaohai Bai, Jing Yang, Zengwei Yuan, Fei Lun, Mengru Wang, Maryna Strokal, Carolien Kroeze, Zhenling Cui, Xinping Chen, Lin Ma\",\"doi\":\"10.1038/s43016-024-00977-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country’s well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China’s crop–livestock system is responsible for exceeding what is considered a ‘just’ threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a ‘safe’ water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop–livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050. Sustainable phosphorus (P) management is central to food security and a healthy environment. This study quantifies the impacts of crop–livestock production on P use and losses at the sub-basin scale in China and evaluates the exceedance of a ‘safe’ and ‘just’ P planetary boundary.\",\"PeriodicalId\":94151,\"journal\":{\"name\":\"Nature food\",\"volume\":\"5 6\",\"pages\":\"499-512\"},\"PeriodicalIF\":23.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43016-024-00977-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-00977-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
An optimized crop–livestock system can achieve a safe and just planetary boundary for phosphorus at the sub-basin level in China
The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country’s well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China’s crop–livestock system is responsible for exceeding what is considered a ‘just’ threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a ‘safe’ water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop–livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050. Sustainable phosphorus (P) management is central to food security and a healthy environment. This study quantifies the impacts of crop–livestock production on P use and losses at the sub-basin scale in China and evaluates the exceedance of a ‘safe’ and ‘just’ P planetary boundary.