Paul H. Mayrhofer , Helmut Clemens , Franz D. Fischer
{"title":"基于材料科学的指南,开发坚固的硬薄膜材料","authors":"Paul H. Mayrhofer , Helmut Clemens , Franz D. Fischer","doi":"10.1016/j.pmatsci.2024.101323","DOIUrl":null,"url":null,"abstract":"<div><p>For mechanically dominated load profiles, nitrides are preferred as the base material for structural and functional hard coatings, while oxide-based materials offer better protection against high-temperature corrosion (such as oxidation). Thus, when mechanical and thermal loads are combined, the nitrides used should also have excellent stability against temperature and oxidation. How to develop such nitride materials that can withstand both high mechanical and thermal loads is the focus of this review article. This is done primarily with the help of experimental and theoretical investigations of the Ti–Al–N system.</p><p>On the basis of transition metal nitride coatings, we discuss important material development guidelines for improved strength, fracture toughness as well as thermal stability and oxidation resistance. Using various superlattice coatings, we further discuss how such nanolamellar microstructures can improve both the strength and fracture toughness of hard coating materials. In addition, other concepts for improving fracture toughness are discussed, with a focus on those that can increase both fracture toughness and hardness.</p><p>The individual concepts allow to design materials to meet the ever-growing demand for coatings with a wide range of excellent properties and outstanding property combinations.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101323"},"PeriodicalIF":33.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000926/pdfft?md5=c0df671b3b846a5558c76972286ffa19&pid=1-s2.0-S0079642524000926-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Materials science-based guidelines to develop robust hard thin film materials\",\"authors\":\"Paul H. Mayrhofer , Helmut Clemens , Franz D. Fischer\",\"doi\":\"10.1016/j.pmatsci.2024.101323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For mechanically dominated load profiles, nitrides are preferred as the base material for structural and functional hard coatings, while oxide-based materials offer better protection against high-temperature corrosion (such as oxidation). Thus, when mechanical and thermal loads are combined, the nitrides used should also have excellent stability against temperature and oxidation. How to develop such nitride materials that can withstand both high mechanical and thermal loads is the focus of this review article. This is done primarily with the help of experimental and theoretical investigations of the Ti–Al–N system.</p><p>On the basis of transition metal nitride coatings, we discuss important material development guidelines for improved strength, fracture toughness as well as thermal stability and oxidation resistance. Using various superlattice coatings, we further discuss how such nanolamellar microstructures can improve both the strength and fracture toughness of hard coating materials. In addition, other concepts for improving fracture toughness are discussed, with a focus on those that can increase both fracture toughness and hardness.</p><p>The individual concepts allow to design materials to meet the ever-growing demand for coatings with a wide range of excellent properties and outstanding property combinations.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"146 \",\"pages\":\"Article 101323\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000926/pdfft?md5=c0df671b3b846a5558c76972286ffa19&pid=1-s2.0-S0079642524000926-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000926\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000926","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials science-based guidelines to develop robust hard thin film materials
For mechanically dominated load profiles, nitrides are preferred as the base material for structural and functional hard coatings, while oxide-based materials offer better protection against high-temperature corrosion (such as oxidation). Thus, when mechanical and thermal loads are combined, the nitrides used should also have excellent stability against temperature and oxidation. How to develop such nitride materials that can withstand both high mechanical and thermal loads is the focus of this review article. This is done primarily with the help of experimental and theoretical investigations of the Ti–Al–N system.
On the basis of transition metal nitride coatings, we discuss important material development guidelines for improved strength, fracture toughness as well as thermal stability and oxidation resistance. Using various superlattice coatings, we further discuss how such nanolamellar microstructures can improve both the strength and fracture toughness of hard coating materials. In addition, other concepts for improving fracture toughness are discussed, with a focus on those that can increase both fracture toughness and hardness.
The individual concepts allow to design materials to meet the ever-growing demand for coatings with a wide range of excellent properties and outstanding property combinations.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.