使用偏移点激光传感器的挠性斜线间距偏差快速测量方法

Machines Pub Date : 2024-06-03 DOI:10.3390/machines12060381
Xiaoyi Wang, Kunlei Zheng, Longyuan Xiao, Chengxiang Zhao, Mingkang Liu, Dongjie Zhu, Tianyang Yao, Zhaoyao Shi
{"title":"使用偏移点激光传感器的挠性斜线间距偏差快速测量方法","authors":"Xiaoyi Wang, Kunlei Zheng, Longyuan Xiao, Chengxiang Zhao, Mingkang Liu, Dongjie Zhu, Tianyang Yao, Zhaoyao Shi","doi":"10.3390/machines12060381","DOIUrl":null,"url":null,"abstract":"Flexsplines in harmonic gear reducers are usually characterized by a large number of teeth, small modulus, and poor stiffness, which makes them difficult to measure using conventional gear measuring centers. In order to efficiently evaluate the quality of flexsplines in harmonic gear reducers, a rapid measurement method for flexspline pitch using offset point laser sensors (PLS) is proposed. This paper investigates the principle of measuring the tooth flank of the flexspline under the offset of the PLS, establishes a model for collecting and analyzing gear surface data, builds an experimental system, calibrates the six pose parameters of the sensor using the geometric features of the flexspline’s outer circular surface, and completes the reconstruction of the left and right gear surfaces of the flexspline based on the measured data. In the experiment, the gear surface obtained by the proposed method is largely consistent with that measured by the video imaging method, and the repeatability of both single pitch deviation and cumulative pitch deviation is within ±3 µm.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"24 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexspline Pitch Deviation Rapid Measurement Method Using Offset Point Laser Sensors\",\"authors\":\"Xiaoyi Wang, Kunlei Zheng, Longyuan Xiao, Chengxiang Zhao, Mingkang Liu, Dongjie Zhu, Tianyang Yao, Zhaoyao Shi\",\"doi\":\"10.3390/machines12060381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexsplines in harmonic gear reducers are usually characterized by a large number of teeth, small modulus, and poor stiffness, which makes them difficult to measure using conventional gear measuring centers. In order to efficiently evaluate the quality of flexsplines in harmonic gear reducers, a rapid measurement method for flexspline pitch using offset point laser sensors (PLS) is proposed. This paper investigates the principle of measuring the tooth flank of the flexspline under the offset of the PLS, establishes a model for collecting and analyzing gear surface data, builds an experimental system, calibrates the six pose parameters of the sensor using the geometric features of the flexspline’s outer circular surface, and completes the reconstruction of the left and right gear surfaces of the flexspline based on the measured data. In the experiment, the gear surface obtained by the proposed method is largely consistent with that measured by the video imaging method, and the repeatability of both single pitch deviation and cumulative pitch deviation is within ±3 µm.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12060381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12060381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谐波齿轮减速器中的挠性花键通常具有齿数多、模量小和刚度差的特点,因此很难使用传统的齿轮测量中心对其进行测量。为了有效评估谐波齿轮减速器中挠性花键的质量,本文提出了一种使用偏置点激光传感器(PLS)快速测量挠性花键间距的方法。本文研究了偏置点激光传感器测量挠性花键齿面的原理,建立了齿轮表面数据采集和分析模型,搭建了实验系统,利用挠性花键外圆表面的几何特征标定了传感器的六个姿态参数,并根据测量数据完成了挠性花键左右齿轮表面的重建。在实验中,所提方法得到的齿轮表面与视频成像方法测量的齿轮表面基本一致,单个节距偏差和累计节距偏差的重复性均在±3 µm以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexspline Pitch Deviation Rapid Measurement Method Using Offset Point Laser Sensors
Flexsplines in harmonic gear reducers are usually characterized by a large number of teeth, small modulus, and poor stiffness, which makes them difficult to measure using conventional gear measuring centers. In order to efficiently evaluate the quality of flexsplines in harmonic gear reducers, a rapid measurement method for flexspline pitch using offset point laser sensors (PLS) is proposed. This paper investigates the principle of measuring the tooth flank of the flexspline under the offset of the PLS, establishes a model for collecting and analyzing gear surface data, builds an experimental system, calibrates the six pose parameters of the sensor using the geometric features of the flexspline’s outer circular surface, and completes the reconstruction of the left and right gear surfaces of the flexspline based on the measured data. In the experiment, the gear surface obtained by the proposed method is largely consistent with that measured by the video imaging method, and the repeatability of both single pitch deviation and cumulative pitch deviation is within ±3 µm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信