{"title":"模式矩阵的对称非负三因子化","authors":"Damjana Kokol Bukovšek, Helena Šmigoc","doi":"10.1016/j.laa.2024.05.017","DOIUrl":null,"url":null,"abstract":"A factorization of an nonnegative symmetric matrix of the form , where is a symmetric matrix, and both and are required to be nonnegative, is called the Symmetric Nonnegative Matrix Trifactorization (SN-Trifactorization). The SNT-rank of is the minimal for which such factorization exists. The SNT-rank of a simple graph that allows loops is defined to be the minimal possible SNT-rank of all symmetric nonnegative matrices whose zero-nonzero pattern is prescribed by the graph .","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric nonnegative trifactorization of pattern matrices\",\"authors\":\"Damjana Kokol Bukovšek, Helena Šmigoc\",\"doi\":\"10.1016/j.laa.2024.05.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A factorization of an nonnegative symmetric matrix of the form , where is a symmetric matrix, and both and are required to be nonnegative, is called the Symmetric Nonnegative Matrix Trifactorization (SN-Trifactorization). The SNT-rank of is the minimal for which such factorization exists. The SNT-rank of a simple graph that allows loops is defined to be the minimal possible SNT-rank of all symmetric nonnegative matrices whose zero-nonzero pattern is prescribed by the graph .\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.laa.2024.05.017\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.laa.2024.05.017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Symmetric nonnegative trifactorization of pattern matrices
A factorization of an nonnegative symmetric matrix of the form , where is a symmetric matrix, and both and are required to be nonnegative, is called the Symmetric Nonnegative Matrix Trifactorization (SN-Trifactorization). The SNT-rank of is the minimal for which such factorization exists. The SNT-rank of a simple graph that allows loops is defined to be the minimal possible SNT-rank of all symmetric nonnegative matrices whose zero-nonzero pattern is prescribed by the graph .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.