研究水热合成 NiFe2O4 纳米粒子的电催化氧进化反应

IF 0.9 4区 材料科学
S. M. Bodhale, G. Bhinge, A. S. Gurav, A. D. Teli, N. Kengar, A. Vedante, P. R. Jadhav, M. M. Abdullah, Hasan B. Albargi, JariS. Algethami, Preeti Singh, C. M. Kanamadi
{"title":"研究水热合成 NiFe2O4 纳米粒子的电催化氧进化反应","authors":"S. M. Bodhale, G. Bhinge, A. S. Gurav, A. D. Teli, N. Kengar, A. Vedante, P. R. Jadhav, M. M. Abdullah, Hasan B. Albargi, JariS. Algethami, Preeti Singh, C. M. Kanamadi","doi":"10.1166/sam.2024.4691","DOIUrl":null,"url":null,"abstract":"In this study, nickel ferrite (NiFe2O4) nanoparticles were synthesized using the hydrothermal method at various pH values. The objective was to investigate the influence of pH variation on particle size and electrocatalytic activity. The formation of cubic phase\n nanoparticles was confirmed through X-ray diffraction (XRD) analysis. To characterize the electrochemical properties, the nickel ferrite nanoparticles were coated onto a stainless steel substrate using the doctor blade technique. The microstructural analysis was conducted using scanning electron\n microscopy (SEM). The samples were further analyzed using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The average crystallite size, determined from the XRD pattern, was approximately 40 nm. SEM images revealed a conversion from nanoplates to a granular\n morphology. The synthesized electrode exhibited an overpotential of 392 mV at 10 mA/cm2 and demonstrated good stability for 5 hours. These findings highlight the excellent electrocatalytic activity of nickel ferrite nanoparticles for the oxygen evolution reaction (OER).","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Electrocatalytic Oxygen Evolution Reaction of Hydrothermally Synthesized NiFe2O4 Nanoparticles\",\"authors\":\"S. M. Bodhale, G. Bhinge, A. S. Gurav, A. D. Teli, N. Kengar, A. Vedante, P. R. Jadhav, M. M. Abdullah, Hasan B. Albargi, JariS. Algethami, Preeti Singh, C. M. Kanamadi\",\"doi\":\"10.1166/sam.2024.4691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, nickel ferrite (NiFe2O4) nanoparticles were synthesized using the hydrothermal method at various pH values. The objective was to investigate the influence of pH variation on particle size and electrocatalytic activity. The formation of cubic phase\\n nanoparticles was confirmed through X-ray diffraction (XRD) analysis. To characterize the electrochemical properties, the nickel ferrite nanoparticles were coated onto a stainless steel substrate using the doctor blade technique. The microstructural analysis was conducted using scanning electron\\n microscopy (SEM). The samples were further analyzed using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The average crystallite size, determined from the XRD pattern, was approximately 40 nm. SEM images revealed a conversion from nanoplates to a granular\\n morphology. The synthesized electrode exhibited an overpotential of 392 mV at 10 mA/cm2 and demonstrated good stability for 5 hours. These findings highlight the excellent electrocatalytic activity of nickel ferrite nanoparticles for the oxygen evolution reaction (OER).\",\"PeriodicalId\":21671,\"journal\":{\"name\":\"Science of Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/sam.2024.4691\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/sam.2024.4691","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用水热法在不同 pH 值下合成了镍铁氧体(NiFe2O4)纳米粒子。目的是研究 pH 值变化对颗粒大小和电催化活性的影响。通过 X 射线衍射 (XRD) 分析确认了立方相纳米粒子的形成。为了表征电化学特性,使用刮刀技术将镍铁氧体纳米颗粒涂覆到不锈钢基底上。使用扫描电子显微镜(SEM)进行了微观结构分析。使用线性扫描伏安法(LSV)和电化学阻抗光谱法(EIS)对样品进行了进一步分析。根据 XRD 图谱确定的平均晶粒大小约为 40 纳米。扫描电子显微镜图像显示了从纳米板到颗粒形态的转变。合成电极在 10 mA/cm2 条件下的过电位为 392 mV,并在 5 小时内表现出良好的稳定性。这些发现凸显了镍铁氧体纳米颗粒在氧进化反应(OER)中的卓越电催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Electrocatalytic Oxygen Evolution Reaction of Hydrothermally Synthesized NiFe2O4 Nanoparticles
In this study, nickel ferrite (NiFe2O4) nanoparticles were synthesized using the hydrothermal method at various pH values. The objective was to investigate the influence of pH variation on particle size and electrocatalytic activity. The formation of cubic phase nanoparticles was confirmed through X-ray diffraction (XRD) analysis. To characterize the electrochemical properties, the nickel ferrite nanoparticles were coated onto a stainless steel substrate using the doctor blade technique. The microstructural analysis was conducted using scanning electron microscopy (SEM). The samples were further analyzed using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The average crystallite size, determined from the XRD pattern, was approximately 40 nm. SEM images revealed a conversion from nanoplates to a granular morphology. The synthesized electrode exhibited an overpotential of 392 mV at 10 mA/cm2 and demonstrated good stability for 5 hours. These findings highlight the excellent electrocatalytic activity of nickel ferrite nanoparticles for the oxygen evolution reaction (OER).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Advanced Materials
Science of Advanced Materials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
11.10%
发文量
98
审稿时长
4.4 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信