K. M. Rabadanov, N. A. Ashurbekov, K. O. Iminov, G. Sh. Shakhsinov, M. Z. Zakaryaeva, A. A. Murtazaeva
{"title":"具有横向磁场效应的高压脉冲放电中氦原子的可迁移生成动力学","authors":"K. M. Rabadanov, N. A. Ashurbekov, K. O. Iminov, G. Sh. Shakhsinov, M. Z. Zakaryaeva, A. A. Murtazaeva","doi":"10.1007/s11090-024-10478-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastable Helium Atom Creation Dynamics in High-Voltage Pulsed Discharge with Transverse Magnetic Field Effects\",\"authors\":\"K. M. Rabadanov, N. A. Ashurbekov, K. O. Iminov, G. Sh. Shakhsinov, M. Z. Zakaryaeva, A. A. Murtazaeva\",\"doi\":\"10.1007/s11090-024-10478-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10478-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10478-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Metastable Helium Atom Creation Dynamics in High-Voltage Pulsed Discharge with Transverse Magnetic Field Effects
In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.