Allison Gaines, Maria Shahid, Daisy Coyle, Eden Barrett, Michalis Hadjikakou, Jason H. Y. Wu, Fraser Taylor, Simone Pettigrew, Bruce Neal, Paraskevi Seferidi
{"title":"在澳大利亚,改变食品和饮料产品的采购方式可减少温室气体排放","authors":"Allison Gaines, Maria Shahid, Daisy Coyle, Eden Barrett, Michalis Hadjikakou, Jason H. Y. Wu, Fraser Taylor, Simone Pettigrew, Bruce Neal, Paraskevi Seferidi","doi":"10.1038/s43016-024-00971-6","DOIUrl":null,"url":null,"abstract":"Switching between similar food and beverage products may reduce greenhouse gas emissions (GHGe). Here, using consumer data linked to 23,550 product-specific GHGe values, we estimated annual GHGe attributable to product purchases consumed at home in Australia and calculated reductions from specific switches. Potential changes to mean Health Star Rating, mean energy density and the proportion of ultraprocessed foods purchased were assessed. Approximately 31 million tonnes of GHGe were attributable to products consumed at home in 2019, the three highest contributors of GHGe being ‘meat and meat products’ (49%), ‘dairy’ (17%) and ‘non-alcoholic beverages’ (16%). Switching higher-emission products for ‘very similar’ lower-emission products could reduce total emissions by 26%. Switches to ‘less similar’ lower-emission products could lead to a 71% reduction. Switches had little impact on the average Health Star Rating, energy density of purchases and proportion of ultraprocessed foods purchased. Directing manufacturing and marketing towards lower-environmental-impact products and signposting such options to consumers are key. One strategy to reduce the ecological footprint of food systems is to replace higher-emissions food products with lower-emissions alternatives. This study estimates the potential impact of product switches in Australia within ‘very similar’ and ‘less similar’ food categories in terms of greenhouse gas emissions and the nutritional quality and energy density of consumer purchases.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"5 6","pages":"524-532"},"PeriodicalIF":23.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43016-024-00971-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Switches in food and beverage product purchases can reduce greenhouse gas emissions in Australia\",\"authors\":\"Allison Gaines, Maria Shahid, Daisy Coyle, Eden Barrett, Michalis Hadjikakou, Jason H. Y. Wu, Fraser Taylor, Simone Pettigrew, Bruce Neal, Paraskevi Seferidi\",\"doi\":\"10.1038/s43016-024-00971-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Switching between similar food and beverage products may reduce greenhouse gas emissions (GHGe). Here, using consumer data linked to 23,550 product-specific GHGe values, we estimated annual GHGe attributable to product purchases consumed at home in Australia and calculated reductions from specific switches. Potential changes to mean Health Star Rating, mean energy density and the proportion of ultraprocessed foods purchased were assessed. Approximately 31 million tonnes of GHGe were attributable to products consumed at home in 2019, the three highest contributors of GHGe being ‘meat and meat products’ (49%), ‘dairy’ (17%) and ‘non-alcoholic beverages’ (16%). Switching higher-emission products for ‘very similar’ lower-emission products could reduce total emissions by 26%. Switches to ‘less similar’ lower-emission products could lead to a 71% reduction. Switches had little impact on the average Health Star Rating, energy density of purchases and proportion of ultraprocessed foods purchased. Directing manufacturing and marketing towards lower-environmental-impact products and signposting such options to consumers are key. One strategy to reduce the ecological footprint of food systems is to replace higher-emissions food products with lower-emissions alternatives. This study estimates the potential impact of product switches in Australia within ‘very similar’ and ‘less similar’ food categories in terms of greenhouse gas emissions and the nutritional quality and energy density of consumer purchases.\",\"PeriodicalId\":94151,\"journal\":{\"name\":\"Nature food\",\"volume\":\"5 6\",\"pages\":\"524-532\"},\"PeriodicalIF\":23.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43016-024-00971-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43016-024-00971-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-00971-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Switches in food and beverage product purchases can reduce greenhouse gas emissions in Australia
Switching between similar food and beverage products may reduce greenhouse gas emissions (GHGe). Here, using consumer data linked to 23,550 product-specific GHGe values, we estimated annual GHGe attributable to product purchases consumed at home in Australia and calculated reductions from specific switches. Potential changes to mean Health Star Rating, mean energy density and the proportion of ultraprocessed foods purchased were assessed. Approximately 31 million tonnes of GHGe were attributable to products consumed at home in 2019, the three highest contributors of GHGe being ‘meat and meat products’ (49%), ‘dairy’ (17%) and ‘non-alcoholic beverages’ (16%). Switching higher-emission products for ‘very similar’ lower-emission products could reduce total emissions by 26%. Switches to ‘less similar’ lower-emission products could lead to a 71% reduction. Switches had little impact on the average Health Star Rating, energy density of purchases and proportion of ultraprocessed foods purchased. Directing manufacturing and marketing towards lower-environmental-impact products and signposting such options to consumers are key. One strategy to reduce the ecological footprint of food systems is to replace higher-emissions food products with lower-emissions alternatives. This study estimates the potential impact of product switches in Australia within ‘very similar’ and ‘less similar’ food categories in terms of greenhouse gas emissions and the nutritional quality and energy density of consumer purchases.