面向控制工程教育工程实践的火星探测控制虚拟仿真实验平台

IF 2.1 2区 工程技术 Q2 EDUCATION, SCIENTIFIC DISCIPLINES
Zeyu Wang;Yixin Liu;Lingling Wang;Li Fu
{"title":"面向控制工程教育工程实践的火星探测控制虚拟仿真实验平台","authors":"Zeyu Wang;Yixin Liu;Lingling Wang;Li Fu","doi":"10.1109/TE.2024.3392332","DOIUrl":null,"url":null,"abstract":"Contribution: This article presents a Mars Exploration Control Virtual Simulation Experiment Platform (MEC-vslab), which aims to address the current challenge of limited integration between control engineering education and engineering practice. MEC-vslab is oriented toward the practical needs of Mars exploration engineering. It offers unparalleled advantages by transcending temporal and spatial restrictions and has been applied to several basic control engineering curriculums.Background: Owing to the limited applicability of conventional control engineering education in practical engineering, students encounter difficulties in connecting theoretical knowledge with real-world application scenarios. Due to the impact of environmental complexity and conditional limitations, teaching laboratories cannot realistically reproduce aerospace engineering application environments and problems, making it difficult to develop students’ ability to solve unknown engineering problems.Intended Outcomes: MEC-vslab facilitates students in acquiring comprehensive control knowledge, encompassing Mars rovers and drones’ dynamics modeling, controller design, and parameter configuration for strongly coupled systems. By engaging with this virtual simulation platform, students develop a profound understanding of cutting-edge control engineering principles, augmenting their proficiency in employing control theory to address practical engineering challenges.Application Design: MEC-vslab as a part of the control-related theoretical curriculum, it encompasses three stages. By completing these stages in succession, students are able to apply their theoretical knowledge toward solving practical engineering problems in a virtual setting.Findings: The analysis based on positive student feedback as well as their learning behavior and questionnaire research that the MEC-vslab is an effective learning tool to integrate control engineering education with high-precision engineering practice needs.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mars Exploration Control Virtual Simulation Experiment Platform for Engineering Practice in Control Engineering Education\",\"authors\":\"Zeyu Wang;Yixin Liu;Lingling Wang;Li Fu\",\"doi\":\"10.1109/TE.2024.3392332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contribution: This article presents a Mars Exploration Control Virtual Simulation Experiment Platform (MEC-vslab), which aims to address the current challenge of limited integration between control engineering education and engineering practice. MEC-vslab is oriented toward the practical needs of Mars exploration engineering. It offers unparalleled advantages by transcending temporal and spatial restrictions and has been applied to several basic control engineering curriculums.Background: Owing to the limited applicability of conventional control engineering education in practical engineering, students encounter difficulties in connecting theoretical knowledge with real-world application scenarios. Due to the impact of environmental complexity and conditional limitations, teaching laboratories cannot realistically reproduce aerospace engineering application environments and problems, making it difficult to develop students’ ability to solve unknown engineering problems.Intended Outcomes: MEC-vslab facilitates students in acquiring comprehensive control knowledge, encompassing Mars rovers and drones’ dynamics modeling, controller design, and parameter configuration for strongly coupled systems. By engaging with this virtual simulation platform, students develop a profound understanding of cutting-edge control engineering principles, augmenting their proficiency in employing control theory to address practical engineering challenges.Application Design: MEC-vslab as a part of the control-related theoretical curriculum, it encompasses three stages. By completing these stages in succession, students are able to apply their theoretical knowledge toward solving practical engineering problems in a virtual setting.Findings: The analysis based on positive student feedback as well as their learning behavior and questionnaire research that the MEC-vslab is an effective learning tool to integrate control engineering education with high-precision engineering practice needs.\",\"PeriodicalId\":55011,\"journal\":{\"name\":\"IEEE Transactions on Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10538330/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10538330/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

贡献:本文介绍了火星探测控制虚拟仿真实验平台(MEC-vslab),旨在解决目前控制工程教育与工程实践结合有限的难题。MEC-vslab 面向火星探测工程的实际需求。它超越时空限制,具有无与伦比的优势,已被应用于多个控制工程基础课程:背景:由于传统的控制工程教育在实际工程中的适用性有限,学生在将理论知识与实际应用场景联系起来时会遇到困难。由于环境复杂性和条件限制的影响,教学实验室无法真实再现航空航天工程应用环境和问题,难以培养学生解决未知工程问题的能力:MEC-vslab有助于学生掌握全面的控制知识,包括火星车和无人机的动力学建模、控制器设计和强耦合系统的参数配置。通过使用这个虚拟仿真平台,学生可以深刻理解最前沿的控制工程原理,提高他们运用控制理论解决实际工程难题的能力:应用设计:MEC-vslab 作为控制相关理论课程的一部分,包括三个阶段。应用设计:MEC-vslab 作为控制相关理论课程的一部分,包含三个阶段,通过依次完成这些阶段,学生能够在虚拟环境中运用理论知识解决实际工程问题:根据学生的积极反馈以及他们的学习行为和问卷调查分析,MEC-vslab 是将控制工程教育与高精度工程实践需求相结合的有效学习工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mars Exploration Control Virtual Simulation Experiment Platform for Engineering Practice in Control Engineering Education
Contribution: This article presents a Mars Exploration Control Virtual Simulation Experiment Platform (MEC-vslab), which aims to address the current challenge of limited integration between control engineering education and engineering practice. MEC-vslab is oriented toward the practical needs of Mars exploration engineering. It offers unparalleled advantages by transcending temporal and spatial restrictions and has been applied to several basic control engineering curriculums.Background: Owing to the limited applicability of conventional control engineering education in practical engineering, students encounter difficulties in connecting theoretical knowledge with real-world application scenarios. Due to the impact of environmental complexity and conditional limitations, teaching laboratories cannot realistically reproduce aerospace engineering application environments and problems, making it difficult to develop students’ ability to solve unknown engineering problems.Intended Outcomes: MEC-vslab facilitates students in acquiring comprehensive control knowledge, encompassing Mars rovers and drones’ dynamics modeling, controller design, and parameter configuration for strongly coupled systems. By engaging with this virtual simulation platform, students develop a profound understanding of cutting-edge control engineering principles, augmenting their proficiency in employing control theory to address practical engineering challenges.Application Design: MEC-vslab as a part of the control-related theoretical curriculum, it encompasses three stages. By completing these stages in succession, students are able to apply their theoretical knowledge toward solving practical engineering problems in a virtual setting.Findings: The analysis based on positive student feedback as well as their learning behavior and questionnaire research that the MEC-vslab is an effective learning tool to integrate control engineering education with high-precision engineering practice needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Education
IEEE Transactions on Education 工程技术-工程:电子与电气
CiteScore
5.80
自引率
7.70%
发文量
90
审稿时长
1 months
期刊介绍: The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信