Yung Po Tsang;Carman Ka Man Lee;Chun Ho Wu;Yanlin Li
{"title":"体验式学习中的游戏化区块链教育:学生认知幸福感分析","authors":"Yung Po Tsang;Carman Ka Man Lee;Chun Ho Wu;Yanlin Li","doi":"10.1109/TE.2024.3395617","DOIUrl":null,"url":null,"abstract":"Contribution: This research explores the effectiveness of a proposed teaching strategy in blockchain education, finding that it enhances learning outcomes, cognitive well-being, and student engagement in tertiary education, ultimately resulting in a shallower learning curve for STEM knowledge.Background: In the context of Industry 4.0, blockchain technology has emerged as a key driver of transformation in data management and system automation across a range of industrial applications. Despite its significance, the intricate theories and concepts associated with blockchain often serve as a deterrent for novice learners, inhibiting their ability to appreciate the value of industrial blockchain. Consequently, there is a pressing need to develop interactive teaching content that alleviates the steep learning curve.Intended Outcomes: The teaching strategy for the gamification in blockchain education is proposed, which positively influence students’ cognitive well-being in terms of knowledge retention, cognitive curiosity, and heightened enjoyment.Application Design: Based on the experimental learning theory, the gamification of blockchain education, namely “BlockTrainHK”, is implemented in the experimental learning cycle. Therefore, the gamified learning in experimental learning (GEL) strategy is proposed to examine the effectiveness of concrete experience, reflective observation, abstract conceptualization and active experimentation by two case studies.Findings: The results of the two-year study on the gamified blockchain education are encouraging: test groups using the GEL strategy were better in the cognitive well-being, and students’ cognitive well-being is positively proportional to the level of individual technical knowledge and skills.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamified Blockchain Education in Experiential Learning: An Analysis of Students’ Cognitive Well-Being\",\"authors\":\"Yung Po Tsang;Carman Ka Man Lee;Chun Ho Wu;Yanlin Li\",\"doi\":\"10.1109/TE.2024.3395617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contribution: This research explores the effectiveness of a proposed teaching strategy in blockchain education, finding that it enhances learning outcomes, cognitive well-being, and student engagement in tertiary education, ultimately resulting in a shallower learning curve for STEM knowledge.Background: In the context of Industry 4.0, blockchain technology has emerged as a key driver of transformation in data management and system automation across a range of industrial applications. Despite its significance, the intricate theories and concepts associated with blockchain often serve as a deterrent for novice learners, inhibiting their ability to appreciate the value of industrial blockchain. Consequently, there is a pressing need to develop interactive teaching content that alleviates the steep learning curve.Intended Outcomes: The teaching strategy for the gamification in blockchain education is proposed, which positively influence students’ cognitive well-being in terms of knowledge retention, cognitive curiosity, and heightened enjoyment.Application Design: Based on the experimental learning theory, the gamification of blockchain education, namely “BlockTrainHK”, is implemented in the experimental learning cycle. Therefore, the gamified learning in experimental learning (GEL) strategy is proposed to examine the effectiveness of concrete experience, reflective observation, abstract conceptualization and active experimentation by two case studies.Findings: The results of the two-year study on the gamified blockchain education are encouraging: test groups using the GEL strategy were better in the cognitive well-being, and students’ cognitive well-being is positively proportional to the level of individual technical knowledge and skills.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10534277/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10534277/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Gamified Blockchain Education in Experiential Learning: An Analysis of Students’ Cognitive Well-Being
Contribution: This research explores the effectiveness of a proposed teaching strategy in blockchain education, finding that it enhances learning outcomes, cognitive well-being, and student engagement in tertiary education, ultimately resulting in a shallower learning curve for STEM knowledge.Background: In the context of Industry 4.0, blockchain technology has emerged as a key driver of transformation in data management and system automation across a range of industrial applications. Despite its significance, the intricate theories and concepts associated with blockchain often serve as a deterrent for novice learners, inhibiting their ability to appreciate the value of industrial blockchain. Consequently, there is a pressing need to develop interactive teaching content that alleviates the steep learning curve.Intended Outcomes: The teaching strategy for the gamification in blockchain education is proposed, which positively influence students’ cognitive well-being in terms of knowledge retention, cognitive curiosity, and heightened enjoyment.Application Design: Based on the experimental learning theory, the gamification of blockchain education, namely “BlockTrainHK”, is implemented in the experimental learning cycle. Therefore, the gamified learning in experimental learning (GEL) strategy is proposed to examine the effectiveness of concrete experience, reflective observation, abstract conceptualization and active experimentation by two case studies.Findings: The results of the two-year study on the gamified blockchain education are encouraging: test groups using the GEL strategy were better in the cognitive well-being, and students’ cognitive well-being is positively proportional to the level of individual technical knowledge and skills.