深度学习模型与优化荧光光谱技术,在非等温储存条件下提高虹鳟鱼的新鲜度预测能力

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Yanwei Fan , Ruize Dong , Yongkang Luo , Yuqing Tan , Hui Hong , Zengtao Ji , Ce Shi
{"title":"深度学习模型与优化荧光光谱技术,在非等温储存条件下提高虹鳟鱼的新鲜度预测能力","authors":"Yanwei Fan ,&nbsp;Ruize Dong ,&nbsp;Yongkang Luo ,&nbsp;Yuqing Tan ,&nbsp;Hui Hong ,&nbsp;Zengtao Ji ,&nbsp;Ce Shi","doi":"10.1016/j.foodchem.2024.139774","DOIUrl":null,"url":null,"abstract":"<div><p>This study established long short-term memory (LSTM), convolution neural network long short-term memory (CNN_LSTM), and radial basis function neural network (RBFNN) based on optimized excitation-emission matrix (EEM) from fish eye fluid to predict freshness changes of rainbow trout under nonisothermal storage conditions. The method of residual analysis, core consistency diagnostics, and split-half analysis of parallel factor analysis was used to optimize EEM data, and two characteristic components were extracted. LSTM, CNN_LSTM, and RBFNN models based on characteristic components of EEM used to predict the freshness indices. The results demonstrated the relative errors of RBFNN models with an R<sup>2</sup> above 0.96 and relative errors less than 10% for K-value, total viable counts, and volatile base nitrogen, which were better than those of LSTM and CNN_LSTM models. This study presents a novel approach for predicting the freshness of rainbow trout under nonisothermal storage conditions.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"454 ","pages":"Article 139774"},"PeriodicalIF":8.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning models with optimized fluorescence spectroscopy to advance freshness of rainbow trout predicting under nonisothermal storage conditions\",\"authors\":\"Yanwei Fan ,&nbsp;Ruize Dong ,&nbsp;Yongkang Luo ,&nbsp;Yuqing Tan ,&nbsp;Hui Hong ,&nbsp;Zengtao Ji ,&nbsp;Ce Shi\",\"doi\":\"10.1016/j.foodchem.2024.139774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study established long short-term memory (LSTM), convolution neural network long short-term memory (CNN_LSTM), and radial basis function neural network (RBFNN) based on optimized excitation-emission matrix (EEM) from fish eye fluid to predict freshness changes of rainbow trout under nonisothermal storage conditions. The method of residual analysis, core consistency diagnostics, and split-half analysis of parallel factor analysis was used to optimize EEM data, and two characteristic components were extracted. LSTM, CNN_LSTM, and RBFNN models based on characteristic components of EEM used to predict the freshness indices. The results demonstrated the relative errors of RBFNN models with an R<sup>2</sup> above 0.96 and relative errors less than 10% for K-value, total viable counts, and volatile base nitrogen, which were better than those of LSTM and CNN_LSTM models. This study presents a novel approach for predicting the freshness of rainbow trout under nonisothermal storage conditions.</p></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"454 \",\"pages\":\"Article 139774\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624014249\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624014249","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了基于优化的鱼眼液激发-发射矩阵(EEM)的长短期记忆(LSTM)、卷积神经网络长短期记忆(CNN_LSTM)和径向基函数神经网络(RBFNN),用于预测非等温贮藏条件下虹鳟鱼的鲜度变化。采用残差分析法、核心一致性诊断法和平行因子分析的分半分析法对 EEM 数据进行优化,提取出两个特征成分。基于 EEM 特征成分的 LSTM、CNN_LSTM 和 RBFNN 模型用于预测新鲜度指数。结果表明,RBFNN 模型的相对误差 R2 在 0.96 以上,K 值、菌落总数和挥发性基氮的相对误差小于 10%,优于 LSTM 和 CNN_LSTM 模型。本研究提出了一种在非等温贮藏条件下预测虹鳟鱼新鲜度的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning models with optimized fluorescence spectroscopy to advance freshness of rainbow trout predicting under nonisothermal storage conditions

This study established long short-term memory (LSTM), convolution neural network long short-term memory (CNN_LSTM), and radial basis function neural network (RBFNN) based on optimized excitation-emission matrix (EEM) from fish eye fluid to predict freshness changes of rainbow trout under nonisothermal storage conditions. The method of residual analysis, core consistency diagnostics, and split-half analysis of parallel factor analysis was used to optimize EEM data, and two characteristic components were extracted. LSTM, CNN_LSTM, and RBFNN models based on characteristic components of EEM used to predict the freshness indices. The results demonstrated the relative errors of RBFNN models with an R2 above 0.96 and relative errors less than 10% for K-value, total viable counts, and volatile base nitrogen, which were better than those of LSTM and CNN_LSTM models. This study presents a novel approach for predicting the freshness of rainbow trout under nonisothermal storage conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信