Emilia Zawieja , Natalia Drabińska , Henryk Jeleń , Artur Szwengiel , Krzysztof Durkalec-Michalski , Agata Chmurzynska
{"title":"补充甜菜碱可通过亚甲基四氢叶酸还原酶基因型调节甜菜碱浓度,但对健康活动男性的氨基酸谱无影响:一项随机安慰剂对照交叉研究","authors":"Emilia Zawieja , Natalia Drabińska , Henryk Jeleń , Artur Szwengiel , Krzysztof Durkalec-Michalski , Agata Chmurzynska","doi":"10.1016/j.nutres.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Betaine supplementation is used by athletes, but its mechanism of action is still not fully understood. We hypothesized that betaine supplementation would increase betaine concentration and alter amino acid profiles in relation to <em>MTHFR</em> genotype and dose in physically active males. The study followed a randomized placebo-controlled cross-over design. Blood samples were collected before and after each supplementation period. Serum was analyzed for amino acid profile, homocysteine, betaine, choline, and trimethylamine N-oxide (TMAO) concentrations. For the washout analysis, only participants starting with betaine were included (<em>n</em> = 20). Statistical analysis revealed no differences in the amino acid profile after betaine supplementation. However, betaine concentration significantly increased after betaine supplementation (from 4.89 ± 1.59 µg/mL to 17.31 ± 9.21 µg/mL, <em>P</em> < .001), with a greater increase observed in <em>MTHFR</em> (C677T, rs180113) T-allele carriers compared to CC (<em>P</em> = .027). Betaine supplementation caused a decrease in homocysteine concentration (from 17.04 ± 4.13 µmol/L to 15.44 ± 3.48 µmol/L, <em>P</em> = .00005) and a non-significant increase in TMAO concentrations (from 0.27 ± 0.20 µg/ml to 0.44 ± 0.70 µg/ml, <em>P</em> = .053), but had no effect on choline concentrations. Serum betaine concentrations were not significantly different after the 21-day washout from the baseline values (baseline: 4.93 ± 1.87 µg/mL and after washout: 4.70 ± 1.70 µg/mL, <em>P</em> = 1.000). In conclusion, betaine supplementation increased betaine and decreased homocysteine concentrations, but did not affect the amino acid profile or choline concentrations in healthy active males. Betaine concentrations may be dependent on <em>MTHFR</em> genotype.</p></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"127 ","pages":"Pages 63-74"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betaine supplementation modulates betaine concentration by methylenetetrahydrofolate reductase genotype, but has no effect on amino acid profile in healthy active males: A randomized placebo-controlled cross-over study\",\"authors\":\"Emilia Zawieja , Natalia Drabińska , Henryk Jeleń , Artur Szwengiel , Krzysztof Durkalec-Michalski , Agata Chmurzynska\",\"doi\":\"10.1016/j.nutres.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Betaine supplementation is used by athletes, but its mechanism of action is still not fully understood. We hypothesized that betaine supplementation would increase betaine concentration and alter amino acid profiles in relation to <em>MTHFR</em> genotype and dose in physically active males. The study followed a randomized placebo-controlled cross-over design. Blood samples were collected before and after each supplementation period. Serum was analyzed for amino acid profile, homocysteine, betaine, choline, and trimethylamine N-oxide (TMAO) concentrations. For the washout analysis, only participants starting with betaine were included (<em>n</em> = 20). Statistical analysis revealed no differences in the amino acid profile after betaine supplementation. However, betaine concentration significantly increased after betaine supplementation (from 4.89 ± 1.59 µg/mL to 17.31 ± 9.21 µg/mL, <em>P</em> < .001), with a greater increase observed in <em>MTHFR</em> (C677T, rs180113) T-allele carriers compared to CC (<em>P</em> = .027). Betaine supplementation caused a decrease in homocysteine concentration (from 17.04 ± 4.13 µmol/L to 15.44 ± 3.48 µmol/L, <em>P</em> = .00005) and a non-significant increase in TMAO concentrations (from 0.27 ± 0.20 µg/ml to 0.44 ± 0.70 µg/ml, <em>P</em> = .053), but had no effect on choline concentrations. Serum betaine concentrations were not significantly different after the 21-day washout from the baseline values (baseline: 4.93 ± 1.87 µg/mL and after washout: 4.70 ± 1.70 µg/mL, <em>P</em> = 1.000). In conclusion, betaine supplementation increased betaine and decreased homocysteine concentrations, but did not affect the amino acid profile or choline concentrations in healthy active males. Betaine concentrations may be dependent on <em>MTHFR</em> genotype.</p></div>\",\"PeriodicalId\":19245,\"journal\":{\"name\":\"Nutrition Research\",\"volume\":\"127 \",\"pages\":\"Pages 63-74\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0271531724000691\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271531724000691","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Betaine supplementation modulates betaine concentration by methylenetetrahydrofolate reductase genotype, but has no effect on amino acid profile in healthy active males: A randomized placebo-controlled cross-over study
Betaine supplementation is used by athletes, but its mechanism of action is still not fully understood. We hypothesized that betaine supplementation would increase betaine concentration and alter amino acid profiles in relation to MTHFR genotype and dose in physically active males. The study followed a randomized placebo-controlled cross-over design. Blood samples were collected before and after each supplementation period. Serum was analyzed for amino acid profile, homocysteine, betaine, choline, and trimethylamine N-oxide (TMAO) concentrations. For the washout analysis, only participants starting with betaine were included (n = 20). Statistical analysis revealed no differences in the amino acid profile after betaine supplementation. However, betaine concentration significantly increased after betaine supplementation (from 4.89 ± 1.59 µg/mL to 17.31 ± 9.21 µg/mL, P < .001), with a greater increase observed in MTHFR (C677T, rs180113) T-allele carriers compared to CC (P = .027). Betaine supplementation caused a decrease in homocysteine concentration (from 17.04 ± 4.13 µmol/L to 15.44 ± 3.48 µmol/L, P = .00005) and a non-significant increase in TMAO concentrations (from 0.27 ± 0.20 µg/ml to 0.44 ± 0.70 µg/ml, P = .053), but had no effect on choline concentrations. Serum betaine concentrations were not significantly different after the 21-day washout from the baseline values (baseline: 4.93 ± 1.87 µg/mL and after washout: 4.70 ± 1.70 µg/mL, P = 1.000). In conclusion, betaine supplementation increased betaine and decreased homocysteine concentrations, but did not affect the amino acid profile or choline concentrations in healthy active males. Betaine concentrations may be dependent on MTHFR genotype.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.