Lingyan Li, Peng Zhu, Qiao Li, Yuanming Gao, Yubo Fan
{"title":"基于代用模型的 PLGA 可生物降解鼻窦支架的对称结构设计与结构优化。","authors":"Lingyan Li, Peng Zhu, Qiao Li, Yuanming Gao, Yubo Fan","doi":"10.1080/10255842.2024.2355491","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance the degradation uniformity of PLGA sinus stents to minimize fracture risk caused by stress corrosion. Symmetric stent structures were introduced and compared to sinusoidal structure in terms of stress and degradation uniformity during implantation and degradation processes. Three surrogate models were employed to optimize the honeycomb-like structure. Results showed honeycomb-like structures exhibited the superior stress distribution and highest degradation uniformity. The kriging model achieved the smallest error and degradation uniformity of 83.24%. In conclusion, enhancing the symmetry of stent structures improves degradation uniformity, and the kriging model has potential for the optimization of stent structures.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1981-1990"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetrical structure design of PLGA Biodegradable sinus stents and structure optimization based on surrogate models.\",\"authors\":\"Lingyan Li, Peng Zhu, Qiao Li, Yuanming Gao, Yubo Fan\",\"doi\":\"10.1080/10255842.2024.2355491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to enhance the degradation uniformity of PLGA sinus stents to minimize fracture risk caused by stress corrosion. Symmetric stent structures were introduced and compared to sinusoidal structure in terms of stress and degradation uniformity during implantation and degradation processes. Three surrogate models were employed to optimize the honeycomb-like structure. Results showed honeycomb-like structures exhibited the superior stress distribution and highest degradation uniformity. The kriging model achieved the smallest error and degradation uniformity of 83.24%. In conclusion, enhancing the symmetry of stent structures improves degradation uniformity, and the kriging model has potential for the optimization of stent structures.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1981-1990\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2355491\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2355491","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Symmetrical structure design of PLGA Biodegradable sinus stents and structure optimization based on surrogate models.
This study aims to enhance the degradation uniformity of PLGA sinus stents to minimize fracture risk caused by stress corrosion. Symmetric stent structures were introduced and compared to sinusoidal structure in terms of stress and degradation uniformity during implantation and degradation processes. Three surrogate models were employed to optimize the honeycomb-like structure. Results showed honeycomb-like structures exhibited the superior stress distribution and highest degradation uniformity. The kriging model achieved the smallest error and degradation uniformity of 83.24%. In conclusion, enhancing the symmetry of stent structures improves degradation uniformity, and the kriging model has potential for the optimization of stent structures.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.