髓系特异性铁蛋白轻链缺失不会加剧败血症相关的 AKI。

James D Odum, Juheb Akhter, Vivek Verma, Giacynta Vollmer, Ahmad Davidson, Kelly A Hyndman, Subhashini Bolisetty
{"title":"髓系特异性铁蛋白轻链缺失不会加剧败血症相关的 AKI。","authors":"James D Odum, Juheb Akhter, Vivek Verma, Giacynta Vollmer, Ahmad Davidson, Kelly A Hyndman, Subhashini Bolisetty","doi":"10.1152/ajprenal.00043.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits. Previous work revealed that myeloid FtH deletion leads to a compensatory increase in intracellular and circulating FtL and is associated with amelioration of SA-AKI. We designed this study to test the hypothesis that loss of myeloid FtL and subsequently, circulating FtL will exacerbate the sepsis-induced inflammatory response and worsen SA-AKI. We generated a novel myeloid-specific FtL knockout mouse (FtL<sup>LysM-/-</sup>) and induced sepsis via cecal ligation and puncture or lipopolysaccharide endotoxemia. As expected, serum ferritin levels were significantly lower in the knockout mice, suggesting that myeloid cells dominantly contribute to circulating ferritin. Interestingly, although sepsis induction led to a marked production of pro- and anti-inflammatory cytokines, there was no statistical difference between the genotypes. There was a similar loss of kidney function, as evidenced by a rise in serum creatinine and cystatin C and renal injury identified by expression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Finally, RNA sequencing revealed upregulation of pathways for cell cycle arrest and autophagy postsepsis, but no significant differences were observed between genotypes, including in key genes associated with ferroptosis, an iron-mediated form of cell death. The loss of FtL did not impact sepsis-mediated activation of NF-κB or HIF-1a signaling, key inflammatory pathways associated with dysregulated host response. Taken together, while FtL overexpression was shown to be protective against sepsis, the loss of FtL did not influence sepsis pathogenesis.<b>NEW & NOTEWORTHY</b> Hyperferritinemia in sepsis is often associated with a proinflammatory phenotype and poor prognosis. We previously showed the myeloid deletion of FtH results in a compensatory increase in FtL and is associated with reduced circulating cytokines and decreased rates of SA-AKI in animal sepsis models. Here, we show that myeloid deletion of FtL does not impact the severity of SA-AKI following CLP or LPS, suggesting that FtH plays the predominant role in propagating myeloid-induced proinflammatory pathways.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F171-F183"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myeloid-specific ferritin light chain deletion does not exacerbate sepsis-associated AKI.\",\"authors\":\"James D Odum, Juheb Akhter, Vivek Verma, Giacynta Vollmer, Ahmad Davidson, Kelly A Hyndman, Subhashini Bolisetty\",\"doi\":\"10.1152/ajprenal.00043.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits. Previous work revealed that myeloid FtH deletion leads to a compensatory increase in intracellular and circulating FtL and is associated with amelioration of SA-AKI. We designed this study to test the hypothesis that loss of myeloid FtL and subsequently, circulating FtL will exacerbate the sepsis-induced inflammatory response and worsen SA-AKI. We generated a novel myeloid-specific FtL knockout mouse (FtL<sup>LysM-/-</sup>) and induced sepsis via cecal ligation and puncture or lipopolysaccharide endotoxemia. As expected, serum ferritin levels were significantly lower in the knockout mice, suggesting that myeloid cells dominantly contribute to circulating ferritin. Interestingly, although sepsis induction led to a marked production of pro- and anti-inflammatory cytokines, there was no statistical difference between the genotypes. There was a similar loss of kidney function, as evidenced by a rise in serum creatinine and cystatin C and renal injury identified by expression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Finally, RNA sequencing revealed upregulation of pathways for cell cycle arrest and autophagy postsepsis, but no significant differences were observed between genotypes, including in key genes associated with ferroptosis, an iron-mediated form of cell death. The loss of FtL did not impact sepsis-mediated activation of NF-κB or HIF-1a signaling, key inflammatory pathways associated with dysregulated host response. Taken together, while FtL overexpression was shown to be protective against sepsis, the loss of FtL did not influence sepsis pathogenesis.<b>NEW & NOTEWORTHY</b> Hyperferritinemia in sepsis is often associated with a proinflammatory phenotype and poor prognosis. We previously showed the myeloid deletion of FtH results in a compensatory increase in FtL and is associated with reduced circulating cytokines and decreased rates of SA-AKI in animal sepsis models. Here, we show that myeloid deletion of FtL does not impact the severity of SA-AKI following CLP or LPS, suggesting that FtH plays the predominant role in propagating myeloid-induced proinflammatory pathways.</p>\",\"PeriodicalId\":93867,\"journal\":{\"name\":\"American journal of physiology. Renal physiology\",\"volume\":\" \",\"pages\":\"F171-F183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Renal physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00043.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00043.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脓毒症相关急性肾损伤(SA-AKI)是脓毒症危及生命的一个关键因素。从机理上讲,脓毒症相关急性肾损伤是髓样细胞活化和氧化应激有增无减导致肾小管损伤的结果。铁直接或通过调节铁蛋白的表达介导炎症途径,铁蛋白是一种铁储存蛋白,由铁蛋白轻链(FtL)和重链(FtH)组成。以前的研究表明,骨髓 FtH 缺失会导致细胞内和循环中的 FtL 补偿性增加,并与 SA-AKI 的改善有关。我们设计了这项研究,以验证髓系 FtL 缺失会加剧败血症诱导的炎症反应并恶化 SA-AKI 的假设。我们产生了一种新型髓系特异性 FtL 基因敲除小鼠,并通过盲肠结扎和穿刺或脂多糖内毒素血症诱发败血症。不出所料,基因敲除小鼠的骨髓 FtL 和血清铁蛋白水平明显降低。有趣的是,虽然败血症会导致促炎和抗炎细胞因子的产生,但基因型之间没有统计学差异。肾脏损伤分子-1和中性粒细胞明胶酶相关脂褐质的表达确定了肾脏功能和损伤的类似丧失。RNA 测序显示,败血症后细胞周期停滞和自噬的通路上调,但不同基因型之间没有观察到显著差异,包括与铁凋亡(一种铁介导的细胞死亡形式)相关的关键基因。FtL 基因缺失不会影响 NFkB 或 HIF-1a 信号的激活,这些信号是与宿主反应失调相关的关键炎症通路。综上所述,虽然 FtL 的过表达具有保护作用,但 FtL 的缺失并不影响败血症的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Myeloid-specific ferritin light chain deletion does not exacerbate sepsis-associated AKI.

Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits. Previous work revealed that myeloid FtH deletion leads to a compensatory increase in intracellular and circulating FtL and is associated with amelioration of SA-AKI. We designed this study to test the hypothesis that loss of myeloid FtL and subsequently, circulating FtL will exacerbate the sepsis-induced inflammatory response and worsen SA-AKI. We generated a novel myeloid-specific FtL knockout mouse (FtLLysM-/-) and induced sepsis via cecal ligation and puncture or lipopolysaccharide endotoxemia. As expected, serum ferritin levels were significantly lower in the knockout mice, suggesting that myeloid cells dominantly contribute to circulating ferritin. Interestingly, although sepsis induction led to a marked production of pro- and anti-inflammatory cytokines, there was no statistical difference between the genotypes. There was a similar loss of kidney function, as evidenced by a rise in serum creatinine and cystatin C and renal injury identified by expression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Finally, RNA sequencing revealed upregulation of pathways for cell cycle arrest and autophagy postsepsis, but no significant differences were observed between genotypes, including in key genes associated with ferroptosis, an iron-mediated form of cell death. The loss of FtL did not impact sepsis-mediated activation of NF-κB or HIF-1a signaling, key inflammatory pathways associated with dysregulated host response. Taken together, while FtL overexpression was shown to be protective against sepsis, the loss of FtL did not influence sepsis pathogenesis.NEW & NOTEWORTHY Hyperferritinemia in sepsis is often associated with a proinflammatory phenotype and poor prognosis. We previously showed the myeloid deletion of FtH results in a compensatory increase in FtL and is associated with reduced circulating cytokines and decreased rates of SA-AKI in animal sepsis models. Here, we show that myeloid deletion of FtL does not impact the severity of SA-AKI following CLP or LPS, suggesting that FtH plays the predominant role in propagating myeloid-induced proinflammatory pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信