Mai Dahshan, Nicholas Polys, Leanna House, Chris North, Ryan M. Pollyea, Terece L. Turton, David H. Rogers
{"title":"超大规模的人机合作:通过图像数据库探索仿真集合","authors":"Mai Dahshan, Nicholas Polys, Leanna House, Chris North, Ryan M. Pollyea, Terece L. Turton, David H. Rogers","doi":"10.1007/s12650-024-00999-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human–machine partnerships at the exascale: exploring simulation ensembles through image databases\",\"authors\":\"Mai Dahshan, Nicholas Polys, Leanna House, Chris North, Ryan M. Pollyea, Terece L. Turton, David H. Rogers\",\"doi\":\"10.1007/s12650-024-00999-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":54756,\"journal\":{\"name\":\"Journal of Visualization\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12650-024-00999-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-00999-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Human–machine partnerships at the exascale: exploring simulation ensembles through image databases
Abstract
The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.
Journal of VisualizationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍:
Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization.
The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.