Mahmoud Marhamati , Behnam Dorry , Shima Imannezhad , Mohammad Arafat Hussain , Ali Asghar Neshat , Abulfazl Kalmishi , Mohammad Momeny
{"title":"利用深度网络在心肺复苏期间监测患者气道","authors":"Mahmoud Marhamati , Behnam Dorry , Shima Imannezhad , Mohammad Arafat Hussain , Ali Asghar Neshat , Abulfazl Kalmishi , Mohammad Momeny","doi":"10.1016/j.medengphy.2024.104179","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiopulmonary resuscitation (CPR) is a crucial life-saving technique commonly administered to individuals experiencing cardiac arrest. Among the important aspects of CPR is ensuring the correct airway position of the patient, which is typically monitored by human tutors or supervisors. This study aims to utilize deep transfer learning for the detection of the patient's correct and incorrect airway position during cardiopulmonary resuscitation. To address the challenge of identifying the airway position, we curated a dataset consisting of 198 recorded video sequences, each lasting 6–8 s, showcasing both correct and incorrect airway positions during mouth-to-mouth breathing and breathing with an Ambu Bag. We employed six cutting-edge deep networks, namely DarkNet19, EfficientNetB0, GoogleNet, MobileNet-v2, ResNet50, and NasnetMobile. These networks were initially pre-trained on computer vision data and subsequently fine-tuned using the CPR dataset. The validation of the fine-tuned networks in detecting the patient's correct airway position during mouth-to-mouth breathing achieved impressive results, with the best sensitivity (98.8 %), specificity (100 %), and F-measure (97.2 %). Similarly, the detection of the patient's correct airway position during breathing with an Ambu Bag exhibited excellent performance, with the best sensitivity (100 %), specificity (99.8 %), and F-measure (99.7 %).</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324000808/pdfft?md5=cdd61f06b8723117bad4c4e2e9f50fbf&pid=1-s2.0-S1350453324000808-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Patient's airway monitoring during cardiopulmonary resuscitation using deep networks\",\"authors\":\"Mahmoud Marhamati , Behnam Dorry , Shima Imannezhad , Mohammad Arafat Hussain , Ali Asghar Neshat , Abulfazl Kalmishi , Mohammad Momeny\",\"doi\":\"10.1016/j.medengphy.2024.104179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cardiopulmonary resuscitation (CPR) is a crucial life-saving technique commonly administered to individuals experiencing cardiac arrest. Among the important aspects of CPR is ensuring the correct airway position of the patient, which is typically monitored by human tutors or supervisors. This study aims to utilize deep transfer learning for the detection of the patient's correct and incorrect airway position during cardiopulmonary resuscitation. To address the challenge of identifying the airway position, we curated a dataset consisting of 198 recorded video sequences, each lasting 6–8 s, showcasing both correct and incorrect airway positions during mouth-to-mouth breathing and breathing with an Ambu Bag. We employed six cutting-edge deep networks, namely DarkNet19, EfficientNetB0, GoogleNet, MobileNet-v2, ResNet50, and NasnetMobile. These networks were initially pre-trained on computer vision data and subsequently fine-tuned using the CPR dataset. The validation of the fine-tuned networks in detecting the patient's correct airway position during mouth-to-mouth breathing achieved impressive results, with the best sensitivity (98.8 %), specificity (100 %), and F-measure (97.2 %). Similarly, the detection of the patient's correct airway position during breathing with an Ambu Bag exhibited excellent performance, with the best sensitivity (100 %), specificity (99.8 %), and F-measure (99.7 %).</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000808/pdfft?md5=cdd61f06b8723117bad4c4e2e9f50fbf&pid=1-s2.0-S1350453324000808-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000808\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000808","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Patient's airway monitoring during cardiopulmonary resuscitation using deep networks
Cardiopulmonary resuscitation (CPR) is a crucial life-saving technique commonly administered to individuals experiencing cardiac arrest. Among the important aspects of CPR is ensuring the correct airway position of the patient, which is typically monitored by human tutors or supervisors. This study aims to utilize deep transfer learning for the detection of the patient's correct and incorrect airway position during cardiopulmonary resuscitation. To address the challenge of identifying the airway position, we curated a dataset consisting of 198 recorded video sequences, each lasting 6–8 s, showcasing both correct and incorrect airway positions during mouth-to-mouth breathing and breathing with an Ambu Bag. We employed six cutting-edge deep networks, namely DarkNet19, EfficientNetB0, GoogleNet, MobileNet-v2, ResNet50, and NasnetMobile. These networks were initially pre-trained on computer vision data and subsequently fine-tuned using the CPR dataset. The validation of the fine-tuned networks in detecting the patient's correct airway position during mouth-to-mouth breathing achieved impressive results, with the best sensitivity (98.8 %), specificity (100 %), and F-measure (97.2 %). Similarly, the detection of the patient's correct airway position during breathing with an Ambu Bag exhibited excellent performance, with the best sensitivity (100 %), specificity (99.8 %), and F-measure (99.7 %).
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.