冷态和暖态分层开心果(Pistacia vera L. )果核中的蛋白质羰基化和精氨酸利用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mitra Shahnavazi, Vahid Azarpeykan, Alireza Einali
{"title":"冷态和暖态分层开心果(Pistacia vera L. )果核中的蛋白质羰基化和精氨酸利用","authors":"Mitra Shahnavazi,&nbsp;Vahid Azarpeykan,&nbsp;Alireza Einali","doi":"10.1007/s11738-024-03673-5","DOIUrl":null,"url":null,"abstract":"<div><p>The role of protein modifications and amino acid metabolism in the dormancy breaking of pistachio (<i>Pistacia vera</i> L.) kernels during moist chilling (5 ºC) and warm stratification (25 ºC) were studied. Cold-stratified kernels showed germination up to 97%, while warm-stratified ones had low germination (40%). Increased protein solubility at neutral pH was accompanied by protein carbonylation in both cotyledons and embryonic axes during cold treatment, whereas these values decreased under warm incubation. Amino acid accumulation occurred in both tissues of cold- and warm-stratified kernels. Arginase activity increased in both tissues of cold-stratified kernels but significantly declined during warm treatment. While arginine decarboxylase activity of both organs increased under cold and warm stratification of pistachio kernels, ornithine aminotransferase activity declined during these periods. These results show that increased protein solubility and its carbonylation during cold stratification may induce the protein mobilization and accumulation of amino acids for their subsequent direction to the proper metabolic pathways. In this way, protein modification and arginine metabolism by arginase can be considered germination-specific events during cold stratification of kernels.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein carbonylation and arginine utilization in cold- and warm-stratified pistachio (Pistacia vera L.) kernels\",\"authors\":\"Mitra Shahnavazi,&nbsp;Vahid Azarpeykan,&nbsp;Alireza Einali\",\"doi\":\"10.1007/s11738-024-03673-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of protein modifications and amino acid metabolism in the dormancy breaking of pistachio (<i>Pistacia vera</i> L.) kernels during moist chilling (5 ºC) and warm stratification (25 ºC) were studied. Cold-stratified kernels showed germination up to 97%, while warm-stratified ones had low germination (40%). Increased protein solubility at neutral pH was accompanied by protein carbonylation in both cotyledons and embryonic axes during cold treatment, whereas these values decreased under warm incubation. Amino acid accumulation occurred in both tissues of cold- and warm-stratified kernels. Arginase activity increased in both tissues of cold-stratified kernels but significantly declined during warm treatment. While arginine decarboxylase activity of both organs increased under cold and warm stratification of pistachio kernels, ornithine aminotransferase activity declined during these periods. These results show that increased protein solubility and its carbonylation during cold stratification may induce the protein mobilization and accumulation of amino acids for their subsequent direction to the proper metabolic pathways. In this way, protein modification and arginine metabolism by arginase can be considered germination-specific events during cold stratification of kernels.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-024-03673-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03673-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

研究了湿冷(5 ºC)和暖分层(25 ºC)期间蛋白质修饰和氨基酸代谢在开心果(Pistacia vera L.)果核打破休眠中的作用。冷分层果核的发芽率高达 97%,而热分层果核的发芽率较低(40%)。在冷处理期间,子叶和胚轴中的蛋白质在中性 pH 值下的溶解度增加,并伴随着蛋白质羰基化,而在温暖培养条件下,这些值会降低。冷分层和暖分层果仁的两种组织中都出现了氨基酸积累。精氨酸酶活性在低温分层果仁的两种组织中都有所增加,但在温暖处理过程中显著下降。在开心果果仁冷、暖分层过程中,两个器官的精氨酸脱羧酶活性都有所提高,但鸟氨酸氨基转移酶活性在这两个时期都有所下降。这些结果表明,在低温分层过程中,蛋白质溶解度的增加及其羰基化可能会诱导蛋白质动员和氨基酸积累,使其随后进入适当的代谢途径。因此,可以认为精氨酸酶对蛋白质的修饰和精氨酸的代谢是果仁在低温分层过程中发芽的特异性事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protein carbonylation and arginine utilization in cold- and warm-stratified pistachio (Pistacia vera L.) kernels

Protein carbonylation and arginine utilization in cold- and warm-stratified pistachio (Pistacia vera L.) kernels

Protein carbonylation and arginine utilization in cold- and warm-stratified pistachio (Pistacia vera L.) kernels

The role of protein modifications and amino acid metabolism in the dormancy breaking of pistachio (Pistacia vera L.) kernels during moist chilling (5 ºC) and warm stratification (25 ºC) were studied. Cold-stratified kernels showed germination up to 97%, while warm-stratified ones had low germination (40%). Increased protein solubility at neutral pH was accompanied by protein carbonylation in both cotyledons and embryonic axes during cold treatment, whereas these values decreased under warm incubation. Amino acid accumulation occurred in both tissues of cold- and warm-stratified kernels. Arginase activity increased in both tissues of cold-stratified kernels but significantly declined during warm treatment. While arginine decarboxylase activity of both organs increased under cold and warm stratification of pistachio kernels, ornithine aminotransferase activity declined during these periods. These results show that increased protein solubility and its carbonylation during cold stratification may induce the protein mobilization and accumulation of amino acids for their subsequent direction to the proper metabolic pathways. In this way, protein modification and arginine metabolism by arginase can be considered germination-specific events during cold stratification of kernels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信