基于残差连接和时态网络的刀具磨损预测

Machines Pub Date : 2024-05-01 DOI:10.3390/machines12050306
Ziteng Li, Xinnan Lei, Zhichao You, Tao Huang, Kai Guo, Duo Li, Huan Liu
{"title":"基于残差连接和时态网络的刀具磨损预测","authors":"Ziteng Li, Xinnan Lei, Zhichao You, Tao Huang, Kai Guo, Duo Li, Huan Liu","doi":"10.3390/machines12050306","DOIUrl":null,"url":null,"abstract":"Since tool wear accumulates in the cutting process, the condition of the cutting tool shows a degradation trend, which ultimately affects the surface quality. Tool wear monitoring and prediction are of significant importance in intelligent manufacturing. The cutting signal shows short-term randomness due to non-uniform materials in the workpiece, making it difficult to accurately monitor tool condition by relying on instantaneous signals. To reduce the impact of transient fluctuations, this paper proposes a novel network based on deep learning to monitor and predict tool wear. Firstly, a CNN model based on residual connection was designed to extract deep features from multi-sensor signals. After that, a temporal model based on an encoder and decoder was built for short-term monitoring and long-term prediction. It captured the instantaneous features and long-term trend features by mining the temporal dependence of the signals. In addition, an encoder and decoder-based temporal model is proposed for smoothing correction to improve the estimation accuracy of the temporal model. To validate the performance of the proposed model, the PHM dataset was used for wear monitoring and prediction and compared with other deep learning models. In addition, CFRP milling experiments were conducted to verify the stability and generalization of the model under different machining conditions. The experimental results show that the model outperformed other deep learning models in terms of MAE, MAPE, and RMSE.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"62 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tool Wear Prediction Based on Residual Connection and Temporal Networks\",\"authors\":\"Ziteng Li, Xinnan Lei, Zhichao You, Tao Huang, Kai Guo, Duo Li, Huan Liu\",\"doi\":\"10.3390/machines12050306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since tool wear accumulates in the cutting process, the condition of the cutting tool shows a degradation trend, which ultimately affects the surface quality. Tool wear monitoring and prediction are of significant importance in intelligent manufacturing. The cutting signal shows short-term randomness due to non-uniform materials in the workpiece, making it difficult to accurately monitor tool condition by relying on instantaneous signals. To reduce the impact of transient fluctuations, this paper proposes a novel network based on deep learning to monitor and predict tool wear. Firstly, a CNN model based on residual connection was designed to extract deep features from multi-sensor signals. After that, a temporal model based on an encoder and decoder was built for short-term monitoring and long-term prediction. It captured the instantaneous features and long-term trend features by mining the temporal dependence of the signals. In addition, an encoder and decoder-based temporal model is proposed for smoothing correction to improve the estimation accuracy of the temporal model. To validate the performance of the proposed model, the PHM dataset was used for wear monitoring and prediction and compared with other deep learning models. In addition, CFRP milling experiments were conducted to verify the stability and generalization of the model under different machining conditions. The experimental results show that the model outperformed other deep learning models in terms of MAE, MAPE, and RMSE.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"62 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12050306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12050306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于刀具磨损是在切削过程中积累的,因此切削刀具的状况会呈现下降趋势,最终影响表面质量。刀具磨损监测和预测在智能制造中具有重要意义。由于工件材料的不均匀性,切削信号呈现出短期随机性,因此很难依靠瞬时信号来准确监测刀具状况。为了减少瞬时波动的影响,本文提出了一种基于深度学习的新型网络来监测和预测刀具磨损。首先,设计了一个基于残差连接的 CNN 模型,以从多传感器信号中提取深度特征。然后,建立了一个基于编码器和解码器的时序模型,用于短期监测和长期预测。它通过挖掘信号的时间依赖性来捕捉瞬时特征和长期趋势特征。此外,还提出了一个基于编码器和解码器的时态模型,用于平滑校正,以提高时态模型的估计精度。为了验证所提模型的性能,将 PHM 数据集用于磨损监测和预测,并与其他深度学习模型进行了比较。此外,还进行了 CFRP 铣削实验,以验证模型在不同加工条件下的稳定性和普适性。实验结果表明,该模型在 MAE、MAPE 和 RMSE 方面优于其他深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tool Wear Prediction Based on Residual Connection and Temporal Networks
Since tool wear accumulates in the cutting process, the condition of the cutting tool shows a degradation trend, which ultimately affects the surface quality. Tool wear monitoring and prediction are of significant importance in intelligent manufacturing. The cutting signal shows short-term randomness due to non-uniform materials in the workpiece, making it difficult to accurately monitor tool condition by relying on instantaneous signals. To reduce the impact of transient fluctuations, this paper proposes a novel network based on deep learning to monitor and predict tool wear. Firstly, a CNN model based on residual connection was designed to extract deep features from multi-sensor signals. After that, a temporal model based on an encoder and decoder was built for short-term monitoring and long-term prediction. It captured the instantaneous features and long-term trend features by mining the temporal dependence of the signals. In addition, an encoder and decoder-based temporal model is proposed for smoothing correction to improve the estimation accuracy of the temporal model. To validate the performance of the proposed model, the PHM dataset was used for wear monitoring and prediction and compared with other deep learning models. In addition, CFRP milling experiments were conducted to verify the stability and generalization of the model under different machining conditions. The experimental results show that the model outperformed other deep learning models in terms of MAE, MAPE, and RMSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信