{"title":"伽马振荡可塑性的机制和影响。","authors":"Michael T Craig, Monika H Bielska, Kate Jeffery","doi":"10.1016/j.tins.2024.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term 'gamma potentiation'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"398-399"},"PeriodicalIF":14.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and implications of gamma oscillation plasticity.\",\"authors\":\"Michael T Craig, Monika H Bielska, Kate Jeffery\",\"doi\":\"10.1016/j.tins.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term 'gamma potentiation'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"398-399\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.05.002\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.05.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mechanisms and implications of gamma oscillation plasticity.
A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term 'gamma potentiation'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.