利用 ArF 扫描光刻技术制造的纳米光子集成有源-无源 InP 膜器件和电路

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Aleksandr Zozulia , Jeroen Bolk , Rene van Veldhoven , Gleb Nazarikov , Vadim Pogoretskiy , Samir Rihani , Graham Berry , Kevin Williams , Yuqing Jiao
{"title":"利用 ArF 扫描光刻技术制造的纳米光子集成有源-无源 InP 膜器件和电路","authors":"Aleksandr Zozulia ,&nbsp;Jeroen Bolk ,&nbsp;Rene van Veldhoven ,&nbsp;Gleb Nazarikov ,&nbsp;Vadim Pogoretskiy ,&nbsp;Samir Rihani ,&nbsp;Graham Berry ,&nbsp;Kevin Williams ,&nbsp;Yuqing Jiao","doi":"10.1016/j.mne.2024.100258","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel fabrication approach to an integrated nanophotonic platform, based on a III-V membrane bonded to a Si substrate with benzocyclobutene (BCB). The process incorporates a hybrid lithography strategy combining deep-UV and electron-beam lithography on the same wafer. We report for the first time the usage of deep-UV scanner lithography for the fabrication of the active-passive tapers and sub-micron waveguides on the same wafer, which enables better critical dimension control, uniformity, and reproducibility. The platform uses an active-passive butt-joint interface and includes components such as distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers, electro-optical (EO) and electro-absorption (EA) modulators, and sub-micron ultra-confined passive waveguides, all monolithically integrated into a single membrane layer. The active devices have a heat sink achieved by ultra-thin BCB bonding. Lasers demonstrate up to 26 mW of optical power in the waveguide and a direct modulation bandwidth of up to 21 GHz. The modulators show static extinction up to 28.8 dB.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100258"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000212/pdfft?md5=d5fd93e8bf263fb4464f4415b20d46ae&pid=1-s2.0-S2590007224000212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography\",\"authors\":\"Aleksandr Zozulia ,&nbsp;Jeroen Bolk ,&nbsp;Rene van Veldhoven ,&nbsp;Gleb Nazarikov ,&nbsp;Vadim Pogoretskiy ,&nbsp;Samir Rihani ,&nbsp;Graham Berry ,&nbsp;Kevin Williams ,&nbsp;Yuqing Jiao\",\"doi\":\"10.1016/j.mne.2024.100258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel fabrication approach to an integrated nanophotonic platform, based on a III-V membrane bonded to a Si substrate with benzocyclobutene (BCB). The process incorporates a hybrid lithography strategy combining deep-UV and electron-beam lithography on the same wafer. We report for the first time the usage of deep-UV scanner lithography for the fabrication of the active-passive tapers and sub-micron waveguides on the same wafer, which enables better critical dimension control, uniformity, and reproducibility. The platform uses an active-passive butt-joint interface and includes components such as distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers, electro-optical (EO) and electro-absorption (EA) modulators, and sub-micron ultra-confined passive waveguides, all monolithically integrated into a single membrane layer. The active devices have a heat sink achieved by ultra-thin BCB bonding. Lasers demonstrate up to 26 mW of optical power in the waveguide and a direct modulation bandwidth of up to 21 GHz. The modulators show static extinction up to 28.8 dB.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"23 \",\"pages\":\"Article 100258\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000212/pdfft?md5=d5fd93e8bf263fb4464f4415b20d46ae&pid=1-s2.0-S2590007224000212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新颖的集成纳米光子平台制造方法,该方法基于用苯并环丁烯(BCB)将 III-V 膜键合到硅衬底上。该工艺采用了混合光刻策略,在同一晶片上结合了深紫外光刻和电子束光刻。我们首次报道了利用深紫外扫描光刻技术在同一晶圆上制造有源-无源锥体和亚微米波导的情况,从而实现了更好的临界尺寸控制、一致性和可重复性。该平台采用主动-被动对接界面,包括分布式反馈(DFB)和分布式布拉格反射器(DBR)激光器、电子光学(EO)和电子吸收(EA)调制器以及亚微米超约束无源波导等组件,所有组件都单片集成到一个膜层中。有源器件通过超薄 BCB 焊接实现散热。激光器在波导中显示出高达 26 mW 的光功率和高达 21 GHz 的直接调制带宽。调制器的静态消光高达 28.8 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography

Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography

We present a novel fabrication approach to an integrated nanophotonic platform, based on a III-V membrane bonded to a Si substrate with benzocyclobutene (BCB). The process incorporates a hybrid lithography strategy combining deep-UV and electron-beam lithography on the same wafer. We report for the first time the usage of deep-UV scanner lithography for the fabrication of the active-passive tapers and sub-micron waveguides on the same wafer, which enables better critical dimension control, uniformity, and reproducibility. The platform uses an active-passive butt-joint interface and includes components such as distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers, electro-optical (EO) and electro-absorption (EA) modulators, and sub-micron ultra-confined passive waveguides, all monolithically integrated into a single membrane layer. The active devices have a heat sink achieved by ultra-thin BCB bonding. Lasers demonstrate up to 26 mW of optical power in the waveguide and a direct modulation bandwidth of up to 21 GHz. The modulators show static extinction up to 28.8 dB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信