{"title":"数字数据与人格:人类感知与计算机预测的系统回顾与荟萃分析。","authors":"Joanne Hinds, Adam N Joinson","doi":"10.1037/bul0000430","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, our increasing use of technology has resulted in the production of vast amounts of data. Consequently, many researchers have analyzed digital data in attempt to understand its relationship with individuals' personalities. Such endeavors have inspired efforts from divergent fields, resulting in widely dispersed findings that are seldom synthesized. In this two-part study, we draw from two distinct areas of personality prediction across psychology and computer science to explore the convergent validity of self-reports with human perception and machine learning algorithms, the identifiability of the Big Five traits, and the predictability of different types of data. In Study 1, five meta-analyses of human perception studies integrating findings from 24,124 individuals rated across 30 independent samples demonstrated moderate convergent validity across all traits (ranging from ρ = 0.38 for Neuroticism, to ρ = 0.57 for Openness). In Study 2, a multilevel meta-analysis of computer prediction studies reporting 534 effect sizes across 42 studies also demonstrated moderate convergent validity (ρ = 0.30). Multivariate analyses of the significant moderators highlighted that X, Facebook, Sina Weibo, videos, and smartphones had a negative impact on the variance identified. Finally, in synthesizing the extant literature, we discuss the measures used to assess personality and the analytical approaches adopted. We identify the strengths and limitations across each field and explain how interdisciplinary methodologies could advance the testing and development of psychological theory. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital data and personality: A systematic review and meta-analysis of human perception and computer prediction.\",\"authors\":\"Joanne Hinds, Adam N Joinson\",\"doi\":\"10.1037/bul0000430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, our increasing use of technology has resulted in the production of vast amounts of data. Consequently, many researchers have analyzed digital data in attempt to understand its relationship with individuals' personalities. Such endeavors have inspired efforts from divergent fields, resulting in widely dispersed findings that are seldom synthesized. In this two-part study, we draw from two distinct areas of personality prediction across psychology and computer science to explore the convergent validity of self-reports with human perception and machine learning algorithms, the identifiability of the Big Five traits, and the predictability of different types of data. In Study 1, five meta-analyses of human perception studies integrating findings from 24,124 individuals rated across 30 independent samples demonstrated moderate convergent validity across all traits (ranging from ρ = 0.38 for Neuroticism, to ρ = 0.57 for Openness). In Study 2, a multilevel meta-analysis of computer prediction studies reporting 534 effect sizes across 42 studies also demonstrated moderate convergent validity (ρ = 0.30). Multivariate analyses of the significant moderators highlighted that X, Facebook, Sina Weibo, videos, and smartphones had a negative impact on the variance identified. Finally, in synthesizing the extant literature, we discuss the measures used to assess personality and the analytical approaches adopted. We identify the strengths and limitations across each field and explain how interdisciplinary methodologies could advance the testing and development of psychological theory. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/bul0000430\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/bul0000430","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Digital data and personality: A systematic review and meta-analysis of human perception and computer prediction.
In recent years, our increasing use of technology has resulted in the production of vast amounts of data. Consequently, many researchers have analyzed digital data in attempt to understand its relationship with individuals' personalities. Such endeavors have inspired efforts from divergent fields, resulting in widely dispersed findings that are seldom synthesized. In this two-part study, we draw from two distinct areas of personality prediction across psychology and computer science to explore the convergent validity of self-reports with human perception and machine learning algorithms, the identifiability of the Big Five traits, and the predictability of different types of data. In Study 1, five meta-analyses of human perception studies integrating findings from 24,124 individuals rated across 30 independent samples demonstrated moderate convergent validity across all traits (ranging from ρ = 0.38 for Neuroticism, to ρ = 0.57 for Openness). In Study 2, a multilevel meta-analysis of computer prediction studies reporting 534 effect sizes across 42 studies also demonstrated moderate convergent validity (ρ = 0.30). Multivariate analyses of the significant moderators highlighted that X, Facebook, Sina Weibo, videos, and smartphones had a negative impact on the variance identified. Finally, in synthesizing the extant literature, we discuss the measures used to assess personality and the analytical approaches adopted. We identify the strengths and limitations across each field and explain how interdisciplinary methodologies could advance the testing and development of psychological theory. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.