Benedikt Holm, Gabriel Jouan, Emil Hardarson, Sigríður Sigurðardottir, Kenan Hoelke, Conor Murphy, Erna Sif Arnardóttir, María Óskarsdóttir, Anna Sigríður Islind
{"title":"结合专家监督的多中心多导睡眠图数据处理优化框架","authors":"Benedikt Holm, Gabriel Jouan, Emil Hardarson, Sigríður Sigurðardottir, Kenan Hoelke, Conor Murphy, Erna Sif Arnardóttir, María Óskarsdóttir, Anna Sigríður Islind","doi":"10.3389/fninf.2024.1379932","DOIUrl":null,"url":null,"abstract":"IntroductionPolysomnographic recordings are essential for diagnosing many sleep disorders, yet their detailed analysis presents considerable challenges. With the rise of machine learning methodologies, researchers have created various algorithms to automatically score and extract clinically relevant features from polysomnography, but less research has been devoted to how exactly the algorithms should be incorporated into the workflow of sleep technologists. This paper presents a sophisticated data collection platform developed under the Sleep Revolution project, to harness polysomnographic data from multiple European centers.MethodsA tripartite platform is presented: a user-friendly web platform for uploading three-night polysomnographic recordings, a dedicated splitter that segments these into individual one-night recordings, and an advanced processor that enhances the one-night polysomnography with contemporary automatic scoring algorithms. The platform is evaluated using real-life data and human scorers, whereby scoring time, accuracy, and trust are quantified. Additionally, the scorers were interviewed about their trust in the platform, along with the impact of its integration into their workflow.ResultsWe found that incorporating AI into the workflow of sleep technologists both decreased the time to score by up to 65 min and increased the agreement between technologists by as much as 0.17 <jats:italic>κ</jats:italic>.DiscussionWe conclude that while the inclusion of AI into the workflow of sleep technologists can have a positive impact in terms of speed and agreement, there is a need for trust in the algorithms.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"20 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized framework for processing multicentric polysomnographic data incorporating expert human oversight\",\"authors\":\"Benedikt Holm, Gabriel Jouan, Emil Hardarson, Sigríður Sigurðardottir, Kenan Hoelke, Conor Murphy, Erna Sif Arnardóttir, María Óskarsdóttir, Anna Sigríður Islind\",\"doi\":\"10.3389/fninf.2024.1379932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionPolysomnographic recordings are essential for diagnosing many sleep disorders, yet their detailed analysis presents considerable challenges. With the rise of machine learning methodologies, researchers have created various algorithms to automatically score and extract clinically relevant features from polysomnography, but less research has been devoted to how exactly the algorithms should be incorporated into the workflow of sleep technologists. This paper presents a sophisticated data collection platform developed under the Sleep Revolution project, to harness polysomnographic data from multiple European centers.MethodsA tripartite platform is presented: a user-friendly web platform for uploading three-night polysomnographic recordings, a dedicated splitter that segments these into individual one-night recordings, and an advanced processor that enhances the one-night polysomnography with contemporary automatic scoring algorithms. The platform is evaluated using real-life data and human scorers, whereby scoring time, accuracy, and trust are quantified. Additionally, the scorers were interviewed about their trust in the platform, along with the impact of its integration into their workflow.ResultsWe found that incorporating AI into the workflow of sleep technologists both decreased the time to score by up to 65 min and increased the agreement between technologists by as much as 0.17 <jats:italic>κ</jats:italic>.DiscussionWe conclude that while the inclusion of AI into the workflow of sleep technologists can have a positive impact in terms of speed and agreement, there is a need for trust in the algorithms.\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2024.1379932\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1379932","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
An optimized framework for processing multicentric polysomnographic data incorporating expert human oversight
IntroductionPolysomnographic recordings are essential for diagnosing many sleep disorders, yet their detailed analysis presents considerable challenges. With the rise of machine learning methodologies, researchers have created various algorithms to automatically score and extract clinically relevant features from polysomnography, but less research has been devoted to how exactly the algorithms should be incorporated into the workflow of sleep technologists. This paper presents a sophisticated data collection platform developed under the Sleep Revolution project, to harness polysomnographic data from multiple European centers.MethodsA tripartite platform is presented: a user-friendly web platform for uploading three-night polysomnographic recordings, a dedicated splitter that segments these into individual one-night recordings, and an advanced processor that enhances the one-night polysomnography with contemporary automatic scoring algorithms. The platform is evaluated using real-life data and human scorers, whereby scoring time, accuracy, and trust are quantified. Additionally, the scorers were interviewed about their trust in the platform, along with the impact of its integration into their workflow.ResultsWe found that incorporating AI into the workflow of sleep technologists both decreased the time to score by up to 65 min and increased the agreement between technologists by as much as 0.17 κ.DiscussionWe conclude that while the inclusion of AI into the workflow of sleep technologists can have a positive impact in terms of speed and agreement, there is a need for trust in the algorithms.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.