Lunxian Liu, Meifeng Chen, Xiaorong Xu, Zhimeng Su, Ming Tang, Jing Tang, Jiyi Gong, Ximin Zhang, Yin Yi
{"title":"碳酸氢盐影响参与绿僵病的铁获取和转座基因的表达","authors":"Lunxian Liu, Meifeng Chen, Xiaorong Xu, Zhimeng Su, Ming Tang, Jing Tang, Jiyi Gong, Ximin Zhang, Yin Yi","doi":"10.1007/s11738-024-03685-1","DOIUrl":null,"url":null,"abstract":"<div><p>Iron (Fe) deficiency chlorosis (FDC) in plant is associated with high bicarbonate concentration in calcareous soil and irrigation water, which leads to new leaf yellowing and lessens crop yield and quality. However, little is known about whether the chlorosis under bicarbonate stress resulted from blocking root–shoot Fe translocation or root Fe absorption. Moreover, the molecular response of chlorotic leaf under bicarbonate stress has been rarely reported on. The purpose of this study was to investigate the effect of bicarbonate on Fe acquisition, Fe translocation as well as Fe accumulation in roots, normal leaf (NL) and chlorotic leaf (CL) of <i>Medicago lupulina</i>. Seeds were grown with and without Fe and NaHCO<sub>3</sub> (Fe and Bic) in the nutrient solution for 10 d. Fe content, gene expression and enzymatic activity in different tissues were determined. A factorial statistical design with two factors (Fe and Bic) and two levels of each factor was adopted: + Fe, −Fe, + Fe + Bic and −Fe + Bic. Results indicated that bicarbonate stress increased the expression of genes <i>MlHA1</i>, <i>MlFRO1</i> and <i>MlIRT1</i> related to Fe acquisition and promoted the Fe absorption from solution. Furthermore, the presence of bicarbonate stress inhibited the expression of <i>MlMATE66</i> in roots, prevented the Fe translocation from roots to developing leaf, brought about Fe accumulation in roots and reduced the Fe content in new leaf. Generally, according to our results, bicarbonate could prevent Fe translocation from roots into developing leaf, decrease Fe bioavailability and induce chlorosis in <i>M. lupulina</i>.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bicarbonate affects the expression of iron acquisition and translocation genes involved in chlorosis in Medicago lupulina\",\"authors\":\"Lunxian Liu, Meifeng Chen, Xiaorong Xu, Zhimeng Su, Ming Tang, Jing Tang, Jiyi Gong, Ximin Zhang, Yin Yi\",\"doi\":\"10.1007/s11738-024-03685-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iron (Fe) deficiency chlorosis (FDC) in plant is associated with high bicarbonate concentration in calcareous soil and irrigation water, which leads to new leaf yellowing and lessens crop yield and quality. However, little is known about whether the chlorosis under bicarbonate stress resulted from blocking root–shoot Fe translocation or root Fe absorption. Moreover, the molecular response of chlorotic leaf under bicarbonate stress has been rarely reported on. The purpose of this study was to investigate the effect of bicarbonate on Fe acquisition, Fe translocation as well as Fe accumulation in roots, normal leaf (NL) and chlorotic leaf (CL) of <i>Medicago lupulina</i>. Seeds were grown with and without Fe and NaHCO<sub>3</sub> (Fe and Bic) in the nutrient solution for 10 d. Fe content, gene expression and enzymatic activity in different tissues were determined. A factorial statistical design with two factors (Fe and Bic) and two levels of each factor was adopted: + Fe, −Fe, + Fe + Bic and −Fe + Bic. Results indicated that bicarbonate stress increased the expression of genes <i>MlHA1</i>, <i>MlFRO1</i> and <i>MlIRT1</i> related to Fe acquisition and promoted the Fe absorption from solution. Furthermore, the presence of bicarbonate stress inhibited the expression of <i>MlMATE66</i> in roots, prevented the Fe translocation from roots to developing leaf, brought about Fe accumulation in roots and reduced the Fe content in new leaf. Generally, according to our results, bicarbonate could prevent Fe translocation from roots into developing leaf, decrease Fe bioavailability and induce chlorosis in <i>M. lupulina</i>.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-024-03685-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03685-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Bicarbonate affects the expression of iron acquisition and translocation genes involved in chlorosis in Medicago lupulina
Iron (Fe) deficiency chlorosis (FDC) in plant is associated with high bicarbonate concentration in calcareous soil and irrigation water, which leads to new leaf yellowing and lessens crop yield and quality. However, little is known about whether the chlorosis under bicarbonate stress resulted from blocking root–shoot Fe translocation or root Fe absorption. Moreover, the molecular response of chlorotic leaf under bicarbonate stress has been rarely reported on. The purpose of this study was to investigate the effect of bicarbonate on Fe acquisition, Fe translocation as well as Fe accumulation in roots, normal leaf (NL) and chlorotic leaf (CL) of Medicago lupulina. Seeds were grown with and without Fe and NaHCO3 (Fe and Bic) in the nutrient solution for 10 d. Fe content, gene expression and enzymatic activity in different tissues were determined. A factorial statistical design with two factors (Fe and Bic) and two levels of each factor was adopted: + Fe, −Fe, + Fe + Bic and −Fe + Bic. Results indicated that bicarbonate stress increased the expression of genes MlHA1, MlFRO1 and MlIRT1 related to Fe acquisition and promoted the Fe absorption from solution. Furthermore, the presence of bicarbonate stress inhibited the expression of MlMATE66 in roots, prevented the Fe translocation from roots to developing leaf, brought about Fe accumulation in roots and reduced the Fe content in new leaf. Generally, according to our results, bicarbonate could prevent Fe translocation from roots into developing leaf, decrease Fe bioavailability and induce chlorosis in M. lupulina.
期刊介绍:
Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry.
The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.