{"title":"在亚大气压下使用不同的等离子体形成气体生产碱性等离子体活化自来水","authors":"Vikas Rathore, Karaket Watanasit, Suttirak Kaewpawong, Dhammanoon Srinoumm, Arlee Tamman, Dheerawan Boonyawan, Mudtorlep Nisoa","doi":"10.1007/s11090-024-10464-w","DOIUrl":null,"url":null,"abstract":"<div><p>The present study demonstrates the successful production of alkaline plasma-activated tap water (PATW), effectively addressing the challenge of acidity in traditional PATW for a range of applications. Through precise control of plasma-forming gases (oxygen, air, argon) and process parameters, particularly by producing PATW under sub-atmospheric pressure conditions, it becomes possible to shift the pH of acidic PATW towards the alkaline range. This transformation enhances its suitability for applications like agriculture, aquaculture, sterilization, wound healing, disinfection, and food preservation, etc.</p><p>The investigation encompassed the characterization of plasma and the identification of various plasma species/radicals. The impact of different plasma-forming gases on the pH of PATW and the concentration of reactive species in PATW was thoroughly analyzed. Plasma generated using oxygen and argon resulted in the production of reducing or alkaline PATW, while the use of air and air-argon mixtures led to an acidic or oxidizing nature.</p><p>The study also discussed the stability of nitrate ions, nitrite ions, and hydrogen peroxide in PATW, shedding light on their behavior over varying plasma treatment times and plasma-forming gas. Finally, the investigation explored the effects of gas flow rates, gas pressures, water volume, and plasma discharge powers on the concentration of H<sub>2</sub>O<sub>2</sub> in PATW, providing valuable insights into optimizing the production process.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 4","pages":"1735 - 1752"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Alkaline Plasma Activated Tap Water Using Different Plasma Forming Gas at Sub-Atmospheric Pressure\",\"authors\":\"Vikas Rathore, Karaket Watanasit, Suttirak Kaewpawong, Dhammanoon Srinoumm, Arlee Tamman, Dheerawan Boonyawan, Mudtorlep Nisoa\",\"doi\":\"10.1007/s11090-024-10464-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study demonstrates the successful production of alkaline plasma-activated tap water (PATW), effectively addressing the challenge of acidity in traditional PATW for a range of applications. Through precise control of plasma-forming gases (oxygen, air, argon) and process parameters, particularly by producing PATW under sub-atmospheric pressure conditions, it becomes possible to shift the pH of acidic PATW towards the alkaline range. This transformation enhances its suitability for applications like agriculture, aquaculture, sterilization, wound healing, disinfection, and food preservation, etc.</p><p>The investigation encompassed the characterization of plasma and the identification of various plasma species/radicals. The impact of different plasma-forming gases on the pH of PATW and the concentration of reactive species in PATW was thoroughly analyzed. Plasma generated using oxygen and argon resulted in the production of reducing or alkaline PATW, while the use of air and air-argon mixtures led to an acidic or oxidizing nature.</p><p>The study also discussed the stability of nitrate ions, nitrite ions, and hydrogen peroxide in PATW, shedding light on their behavior over varying plasma treatment times and plasma-forming gas. Finally, the investigation explored the effects of gas flow rates, gas pressures, water volume, and plasma discharge powers on the concentration of H<sub>2</sub>O<sub>2</sub> in PATW, providing valuable insights into optimizing the production process.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"44 4\",\"pages\":\"1735 - 1752\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10464-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10464-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Production of Alkaline Plasma Activated Tap Water Using Different Plasma Forming Gas at Sub-Atmospheric Pressure
The present study demonstrates the successful production of alkaline plasma-activated tap water (PATW), effectively addressing the challenge of acidity in traditional PATW for a range of applications. Through precise control of plasma-forming gases (oxygen, air, argon) and process parameters, particularly by producing PATW under sub-atmospheric pressure conditions, it becomes possible to shift the pH of acidic PATW towards the alkaline range. This transformation enhances its suitability for applications like agriculture, aquaculture, sterilization, wound healing, disinfection, and food preservation, etc.
The investigation encompassed the characterization of plasma and the identification of various plasma species/radicals. The impact of different plasma-forming gases on the pH of PATW and the concentration of reactive species in PATW was thoroughly analyzed. Plasma generated using oxygen and argon resulted in the production of reducing or alkaline PATW, while the use of air and air-argon mixtures led to an acidic or oxidizing nature.
The study also discussed the stability of nitrate ions, nitrite ions, and hydrogen peroxide in PATW, shedding light on their behavior over varying plasma treatment times and plasma-forming gas. Finally, the investigation explored the effects of gas flow rates, gas pressures, water volume, and plasma discharge powers on the concentration of H2O2 in PATW, providing valuable insights into optimizing the production process.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.