从 Viola communis 中分离和鉴定杀虫环苷。

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Journal of Natural Products Pub Date : 2025-01-24 Epub Date: 2024-05-15 DOI:10.1021/acs.jnatprod.4c00168
Negin Khatibi, Yen-Hua Huang, Conan K Wang, Thomas Durek, Edward K Gilding, David J Craik
{"title":"从 Viola communis 中分离和鉴定杀虫环苷。","authors":"Negin Khatibi, Yen-Hua Huang, Conan K Wang, Thomas Durek, Edward K Gilding, David J Craik","doi":"10.1021/acs.jnatprod.4c00168","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in <i>Viola communis</i> was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of <i>V. communis</i>, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from <i>V. communis</i> and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":"24-35"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and Characterization of Insecticidal Cyclotides from <i>Viola communis</i>.\",\"authors\":\"Negin Khatibi, Yen-Hua Huang, Conan K Wang, Thomas Durek, Edward K Gilding, David J Craik\",\"doi\":\"10.1021/acs.jnatprod.4c00168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in <i>Viola communis</i> was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of <i>V. communis</i>, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from <i>V. communis</i> and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.</p>\",\"PeriodicalId\":47,\"journal\":{\"name\":\"Journal of Natural Products \",\"volume\":\" \",\"pages\":\"24-35\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Products \",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jnatprod.4c00168\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00168","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

环肽是一种富含半胱氨酸的植物源肽,由 28 至 37 个氨基酸组成,具有从头到尾的环状骨架和三个保守二硫键的结状排列。这些肽具有有益的生物物理特性,因此在制药和农业应用方面大有可为。芸香科植物是主要的环苷酸生产家族,迄今为止,该家族的每一种植物都含有环苷酸。以前曾通过质谱推断出堇菜中含有环苷酸,但其序列和性质尚待探索。本研究利用蛋白质组学和转录组学对该植物中存在的环苷酸进行了研究。在肽水平上确定了 20 个环肽,包括来自手镯亚家族(Vcom1)和莫比乌斯亚家族(Vcom2)的两个新成员。对这些新发现的肽进行的结构分析表明,它们与相同亚家族的环肽具有相似的折叠。对 Vcom1 和 Vcom2 进行的生物学测定显示,它们对 Sf9 昆虫细胞系具有细胞毒性,其中 Vcom1 的效力高于 Vcom2。这些结果表明,可以进一步将它们作为杀虫剂进行研究,并证实了早先的一般发现,即手镯环肽比其莫比乌斯亲属具有更强的杀虫活性。在V. communis的转录组中观察到了7个新的类似环苷酸的序列,凸显了堇菜科植物是具有潜在杀虫活性的新环苷酸的丰富来源。对来自堇菜和其他堇菜科植物的各种前体中环苷酸结构域侧翼序列的分析揭示了环苷酸加工的新见解,并提出了环苷酸生物合成过程中可能存在两类不同的 N 端加工酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Isolation and Characterization of Insecticidal Cyclotides from <i>Viola communis</i>.

Isolation and Characterization of Insecticidal Cyclotides from Viola communis.

Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in Viola communis was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of V. communis, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from V. communis and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信