基于温度解耦硅光子学的法诺共振离子传感器

IF 4.6 2区 物理与天体物理 Q1 OPTICS
Lidan Lu , Guang Chen , Weiqiang Cheng , Yihao Wang , Mingli Dong , Jianzhen Ou , Lianqing Zhu
{"title":"基于温度解耦硅光子学的法诺共振离子传感器","authors":"Lidan Lu ,&nbsp;Guang Chen ,&nbsp;Weiqiang Cheng ,&nbsp;Yihao Wang ,&nbsp;Mingli Dong ,&nbsp;Jianzhen Ou ,&nbsp;Lianqing Zhu","doi":"10.1016/j.optlastec.2024.111097","DOIUrl":null,"url":null,"abstract":"<div><p>A novel and compact ion sensor was developed by combining 2D plasmonic K<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>MoO<sub>3</sub> and Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>WO<sub>3</sub> with hexagonal channel and photonic crystal nanobeam cavity (PCNC) with Fano resonance. Fano resonance PCNC with a deterministic air mode (mirror period<span><math><mo>&gt;</mo></math></span>gradient periodic region) and dielectric mode (mirror period<span><math><mo>&lt;</mo></math></span>gradient periodic region) with a period of 180 nm were designed, which can be fabricated on multi project wafer (MPW) processing. The sensing system exhibits an refractive index (RI) and temperature sensitivity of 234.48 nm<span><math><mo>/</mo></math></span>RIU and 96 nm<span><math><mo>/</mo></math></span>K, respectively. Three PCNCs adopted wavelength division multiplexing over a wide range of wavelengths. Utilizing the near-infrared absorption of degenerated plasma K<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>MoO<sub>3</sub> and Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>WO<sub>3</sub> and its hexagonal ring-like ion sieve, a temperature decoupled Sodium (Na<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) and potassium (K<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) was achieved. Here, Fano resonance originates from interference between a bus waveguide with continue mode, inserted with two air holes, and the discrete state photonic crystal nanobeam cavity. This work paves the way to achieve an ultra-compact lab-on-chip resonance-based photonic building block.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"177 ","pages":"Article 111097"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature decoupled silicon photonics based Fano resonance ion sensor\",\"authors\":\"Lidan Lu ,&nbsp;Guang Chen ,&nbsp;Weiqiang Cheng ,&nbsp;Yihao Wang ,&nbsp;Mingli Dong ,&nbsp;Jianzhen Ou ,&nbsp;Lianqing Zhu\",\"doi\":\"10.1016/j.optlastec.2024.111097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel and compact ion sensor was developed by combining 2D plasmonic K<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>MoO<sub>3</sub> and Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>WO<sub>3</sub> with hexagonal channel and photonic crystal nanobeam cavity (PCNC) with Fano resonance. Fano resonance PCNC with a deterministic air mode (mirror period<span><math><mo>&gt;</mo></math></span>gradient periodic region) and dielectric mode (mirror period<span><math><mo>&lt;</mo></math></span>gradient periodic region) with a period of 180 nm were designed, which can be fabricated on multi project wafer (MPW) processing. The sensing system exhibits an refractive index (RI) and temperature sensitivity of 234.48 nm<span><math><mo>/</mo></math></span>RIU and 96 nm<span><math><mo>/</mo></math></span>K, respectively. Three PCNCs adopted wavelength division multiplexing over a wide range of wavelengths. Utilizing the near-infrared absorption of degenerated plasma K<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>MoO<sub>3</sub> and Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>WO<sub>3</sub> and its hexagonal ring-like ion sieve, a temperature decoupled Sodium (Na<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) and potassium (K<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) was achieved. Here, Fano resonance originates from interference between a bus waveguide with continue mode, inserted with two air holes, and the discrete state photonic crystal nanobeam cavity. This work paves the way to achieve an ultra-compact lab-on-chip resonance-based photonic building block.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"177 \",\"pages\":\"Article 111097\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224005553\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224005553","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

通过将具有六边形通道的二维质子 KxMoO3 和 NaxWO3 与具有法诺共振的光子晶体纳米束腔(PCNC)相结合,开发了一种新型紧凑型离子传感器。设计的法诺共振 PCNC 具有确定性空气模式(镜像周期>梯度周期区)和介质模式(镜像周期<梯度周期区),周期为 180 nm,可在多项目晶圆(MPW)上加工制造。该传感系统的折射率(RI)和温度灵敏度分别为 234.48 nm/RIU 和 96 nm/K。三个 PCNC 采用了宽波长范围的波分复用技术。利用退化等离子体 KxMoO3 和 NaxWO3 及其六角环状离子筛的近红外吸收,实现了钠(Na+)和钾(K+)的温度解耦。在这里,法诺共振源于插入两个气孔的续模总线波导与离散态光子晶体纳米束腔之间的干涉。这项工作为实现基于共振的超小型实验室芯片光子构件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature decoupled silicon photonics based Fano resonance ion sensor

Temperature decoupled silicon photonics based Fano resonance ion sensor

A novel and compact ion sensor was developed by combining 2D plasmonic KxMoO3 and NaxWO3 with hexagonal channel and photonic crystal nanobeam cavity (PCNC) with Fano resonance. Fano resonance PCNC with a deterministic air mode (mirror period>gradient periodic region) and dielectric mode (mirror period<gradient periodic region) with a period of 180 nm were designed, which can be fabricated on multi project wafer (MPW) processing. The sensing system exhibits an refractive index (RI) and temperature sensitivity of 234.48 nm/RIU and 96 nm/K, respectively. Three PCNCs adopted wavelength division multiplexing over a wide range of wavelengths. Utilizing the near-infrared absorption of degenerated plasma KxMoO3 and NaxWO3 and its hexagonal ring-like ion sieve, a temperature decoupled Sodium (Na+) and potassium (K+) was achieved. Here, Fano resonance originates from interference between a bus waveguide with continue mode, inserted with two air holes, and the discrete state photonic crystal nanobeam cavity. This work paves the way to achieve an ultra-compact lab-on-chip resonance-based photonic building block.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信