{"title":"用于教育数据的机器学习方法综述","authors":"Zara Ersozlu, Sona Taheri, Inge Koch","doi":"10.1007/s10639-024-12704-0","DOIUrl":null,"url":null,"abstract":"<p>Integrating machine learning (ML) methods in educational research has the potential to greatly impact upon research, teaching, learning and assessment by enabling personalised learning, adaptive assessment and providing insights into student performance, progress and learning patterns. To reveal more about this notion, we investigated ML approaches used for educational data analysis in the last decade and provided recommendations for further research. Using a systematic literature review (SLR), we examined 77 publications from two large and high-impact databases for educational research using bibliometric mapping and evaluative review analysis. Our results suggest that the top five most frequently used keywords were similar in both databases. The majority of the publications (88%) utilised supervised ML approaches for predicting students’ performances and finding learning patterns. These methods include decision trees, support vector machines, random forests, and logistic regression. Semi-supervised learning methods were less frequently used, but also demonstrated promising results in predicting students’ performance. Finally, we discuss the implications of these results for statisticians, researchers, and policymakers in education.</p>","PeriodicalId":51494,"journal":{"name":"Education and Information Technologies","volume":"11 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of machine learning methods used for educational data\",\"authors\":\"Zara Ersozlu, Sona Taheri, Inge Koch\",\"doi\":\"10.1007/s10639-024-12704-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating machine learning (ML) methods in educational research has the potential to greatly impact upon research, teaching, learning and assessment by enabling personalised learning, adaptive assessment and providing insights into student performance, progress and learning patterns. To reveal more about this notion, we investigated ML approaches used for educational data analysis in the last decade and provided recommendations for further research. Using a systematic literature review (SLR), we examined 77 publications from two large and high-impact databases for educational research using bibliometric mapping and evaluative review analysis. Our results suggest that the top five most frequently used keywords were similar in both databases. The majority of the publications (88%) utilised supervised ML approaches for predicting students’ performances and finding learning patterns. These methods include decision trees, support vector machines, random forests, and logistic regression. Semi-supervised learning methods were less frequently used, but also demonstrated promising results in predicting students’ performance. Finally, we discuss the implications of these results for statisticians, researchers, and policymakers in education.</p>\",\"PeriodicalId\":51494,\"journal\":{\"name\":\"Education and Information Technologies\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education and Information Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s10639-024-12704-0\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education and Information Technologies","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10639-024-12704-0","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
摘要
将机器学习(ML)方法整合到教育研究中,有可能对研究、教学、学习和评估产生巨大影响,实现个性化学习、自适应评估,并深入了解学生的表现、进步和学习模式。为了进一步揭示这一概念,我们对过去十年中用于教育数据分析的 ML 方法进行了调查,并提出了进一步研究的建议。通过系统性文献综述(SLR),我们利用文献计量图谱和评价性综述分析,对两个大型、高影响力教育研究数据库中的 77 篇出版物进行了研究。结果表明,两个数据库中最常使用的前五个关键词相似。大多数出版物(88%)采用了有监督的多语言方法来预测学生的表现和发现学习模式。这些方法包括决策树、支持向量机、随机森林和逻辑回归。半监督学习方法的使用频率较低,但在预测学生成绩方面也取得了可喜的成果。最后,我们讨论了这些结果对统计学家、研究人员和教育政策制定者的影响。
A review of machine learning methods used for educational data
Integrating machine learning (ML) methods in educational research has the potential to greatly impact upon research, teaching, learning and assessment by enabling personalised learning, adaptive assessment and providing insights into student performance, progress and learning patterns. To reveal more about this notion, we investigated ML approaches used for educational data analysis in the last decade and provided recommendations for further research. Using a systematic literature review (SLR), we examined 77 publications from two large and high-impact databases for educational research using bibliometric mapping and evaluative review analysis. Our results suggest that the top five most frequently used keywords were similar in both databases. The majority of the publications (88%) utilised supervised ML approaches for predicting students’ performances and finding learning patterns. These methods include decision trees, support vector machines, random forests, and logistic regression. Semi-supervised learning methods were less frequently used, but also demonstrated promising results in predicting students’ performance. Finally, we discuss the implications of these results for statisticians, researchers, and policymakers in education.
期刊介绍:
The Journal of Education and Information Technologies (EAIT) is a platform for the range of debates and issues in the field of Computing Education as well as the many uses of information and communication technology (ICT) across many educational subjects and sectors. It probes the use of computing to improve education and learning in a variety of settings, platforms and environments.
The journal aims to provide perspectives at all levels, from the micro level of specific pedagogical approaches in Computing Education and applications or instances of use in classrooms, to macro concerns of national policies and major projects; from pre-school classes to adults in tertiary institutions; from teachers and administrators to researchers and designers; from institutions to online and lifelong learning. The journal is embedded in the research and practice of professionals within the contemporary global context and its breadth and scope encourage debate on fundamental issues at all levels and from different research paradigms and learning theories. The journal does not proselytize on behalf of the technologies (whether they be mobile, desktop, interactive, virtual, games-based or learning management systems) but rather provokes debate on all the complex relationships within and between computing and education, whether they are in informal or formal settings. It probes state of the art technologies in Computing Education and it also considers the design and evaluation of digital educational artefacts. The journal aims to maintain and expand its international standing by careful selection on merit of the papers submitted, thus providing a credible ongoing forum for debate and scholarly discourse. Special Issues are occasionally published to cover particular issues in depth. EAIT invites readers to submit papers that draw inferences, probe theory and create new knowledge that informs practice, policy and scholarship. Readers are also invited to comment and reflect upon the argument and opinions published. EAIT is the official journal of the Technical Committee on Education of the International Federation for Information Processing (IFIP) in partnership with UNESCO.