通过集成 FeFET 和 NbOx Mott Memristor 实现 1T1M 可编程人工尖峰神经元

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shujing Zhao;Chuan Yu Han;Fengbin Tian;Yubin Yuan;Junshuai Chai;Hao Xu;Shiquan Fan;Xin Li;Weihua Liu;Can Li;Wing Man Tang;P. T. Lai;Xiaodong Huang;Guohe Zhang;Li Geng;Xiaolei Wang
{"title":"通过集成 FeFET 和 NbOx Mott Memristor 实现 1T1M 可编程人工尖峰神经元","authors":"Shujing Zhao;Chuan Yu Han;Fengbin Tian;Yubin Yuan;Junshuai Chai;Hao Xu;Shiquan Fan;Xin Li;Weihua Liu;Can Li;Wing Man Tang;P. T. Lai;Xiaodong Huang;Guohe Zhang;Li Geng;Xiaolei Wang","doi":"10.1109/LED.2024.3395024","DOIUrl":null,"url":null,"abstract":"In this study, we present a one-transistor-one-memristor (1T1M) programmable artificial spiking neuron, achieved through the integration of a Hf0.5 Zr0.5 O2 ferroelectric transistor (FeFET) and a NbOx Mott memristor. The FeFET’s threshold voltage, configurable by a gate write pulse (\n<inline-formula> <tex-math>${V}_{\\textit {pulse}}$ </tex-math></inline-formula>\n), exhibits excellent retention properties, enabling the storage of data in multiple states. Simultaneously, the NbOx Mott memristor, characterized by threshold switching and high stability, is driven by the FeFET, allowing for the generation of diverse spike rates corresponding to the storage states of the FeFET. Consequently, a programmable artificial spiking neuron is realized, with its states precisely configured by \n<inline-formula> <tex-math>${V}_{\\textit {pulse}}$ </tex-math></inline-formula>\n to accurately transmit the encoded neuromorphic spikes. This achievement lays the groundwork for the development of spiking neural networks (SNNs).","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 7","pages":"1169-1172"},"PeriodicalIF":4.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 1T1M Programmable Artificial Spiking Neuron via the Integration of FeFET and NbOₓ Mott Memristor\",\"authors\":\"Shujing Zhao;Chuan Yu Han;Fengbin Tian;Yubin Yuan;Junshuai Chai;Hao Xu;Shiquan Fan;Xin Li;Weihua Liu;Can Li;Wing Man Tang;P. T. Lai;Xiaodong Huang;Guohe Zhang;Li Geng;Xiaolei Wang\",\"doi\":\"10.1109/LED.2024.3395024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a one-transistor-one-memristor (1T1M) programmable artificial spiking neuron, achieved through the integration of a Hf0.5 Zr0.5 O2 ferroelectric transistor (FeFET) and a NbOx Mott memristor. The FeFET’s threshold voltage, configurable by a gate write pulse (\\n<inline-formula> <tex-math>${V}_{\\\\textit {pulse}}$ </tex-math></inline-formula>\\n), exhibits excellent retention properties, enabling the storage of data in multiple states. Simultaneously, the NbOx Mott memristor, characterized by threshold switching and high stability, is driven by the FeFET, allowing for the generation of diverse spike rates corresponding to the storage states of the FeFET. Consequently, a programmable artificial spiking neuron is realized, with its states precisely configured by \\n<inline-formula> <tex-math>${V}_{\\\\textit {pulse}}$ </tex-math></inline-formula>\\n to accurately transmit the encoded neuromorphic spikes. This achievement lays the groundwork for the development of spiking neural networks (SNNs).\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 7\",\"pages\":\"1169-1172\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10521566/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10521566/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种一晶体管一忆苦思甜器(1T1M)可编程人工尖峰神经元,它是通过集成 Hf0.5 Zr0.5 O2 铁电晶体管(FeFET)和 NbOx Mott 忆苦思甜器实现的。FeFET 的阈值电压可通过栅极写入脉冲(${V}_{textit {pulse}}$)进行配置,具有出色的保持特性,能够在多种状态下存储数据。同时,NbOx Mott Memristor 具有阈值切换和高稳定性的特点,由 FeFET 驱动,可以产生与 FeFET 存储状态相对应的不同尖峰速率。因此,可编程人工尖峰神经元得以实现,其状态由 ${V}_{textit {pulse}}$ 精确配置,以准确传输编码的神经形态尖峰。这一成果为开发尖峰神经网络(SNN)奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1T1M Programmable Artificial Spiking Neuron via the Integration of FeFET and NbOₓ Mott Memristor
In this study, we present a one-transistor-one-memristor (1T1M) programmable artificial spiking neuron, achieved through the integration of a Hf0.5 Zr0.5 O2 ferroelectric transistor (FeFET) and a NbOx Mott memristor. The FeFET’s threshold voltage, configurable by a gate write pulse ( ${V}_{\textit {pulse}}$ ), exhibits excellent retention properties, enabling the storage of data in multiple states. Simultaneously, the NbOx Mott memristor, characterized by threshold switching and high stability, is driven by the FeFET, allowing for the generation of diverse spike rates corresponding to the storage states of the FeFET. Consequently, a programmable artificial spiking neuron is realized, with its states precisely configured by ${V}_{\textit {pulse}}$ to accurately transmit the encoded neuromorphic spikes. This achievement lays the groundwork for the development of spiking neural networks (SNNs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信