用于印刷电路板的新型垂直导电结构及其可扩展模型

Junyong Park;Chaofeng Li;Eddie Mok;Joe Dickson;Joan Tourné;Aritharan Thurairajaratnam;DongHyun Kim
{"title":"用于印刷电路板的新型垂直导电结构及其可扩展模型","authors":"Junyong Park;Chaofeng Li;Eddie Mok;Joe Dickson;Joan Tourné;Aritharan Thurairajaratnam;DongHyun Kim","doi":"10.1109/TSIPI.2024.3391210","DOIUrl":null,"url":null,"abstract":"This article proposes a new vertical conductive structure (VeCS) to replace the general via structure for signal connection on printed circuit boards (PCBs). Vias have been widely used as interconnects for in-between layers in PCBs. However, vias have limitations due to their discontinuous characteristic impedance. The VeCS consists of a conductive structure shielded vertically by a metal structure, which provides impedance control. Thus, the VeCS has the constant characteristic impedance that can get better signal integrity for the high-speed channel than the general via structure. This article also proposes a scalable 3-D electromagnetic simulation model of the VeCS for signal integrity analysis. Simulated annealing and linear regression revealed that the scalable model accurately represents the VeCS. The electrical performances of a VeCS and a via were compared up to 70 GHz. The measured insertion losses at 70 GHz for the VeCS and the via were 35 dB and 70 dB, respectively, because PCB vias exhibit significant reflection loss above 10 GHz. In conclusion, this article proposes a novel vertical interconnection for PCBs.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"67-74"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Vertical Conductive Structure for Printed Circuit Boards and its Scalable Model\",\"authors\":\"Junyong Park;Chaofeng Li;Eddie Mok;Joe Dickson;Joan Tourné;Aritharan Thurairajaratnam;DongHyun Kim\",\"doi\":\"10.1109/TSIPI.2024.3391210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a new vertical conductive structure (VeCS) to replace the general via structure for signal connection on printed circuit boards (PCBs). Vias have been widely used as interconnects for in-between layers in PCBs. However, vias have limitations due to their discontinuous characteristic impedance. The VeCS consists of a conductive structure shielded vertically by a metal structure, which provides impedance control. Thus, the VeCS has the constant characteristic impedance that can get better signal integrity for the high-speed channel than the general via structure. This article also proposes a scalable 3-D electromagnetic simulation model of the VeCS for signal integrity analysis. Simulated annealing and linear regression revealed that the scalable model accurately represents the VeCS. The electrical performances of a VeCS and a via were compared up to 70 GHz. The measured insertion losses at 70 GHz for the VeCS and the via were 35 dB and 70 dB, respectively, because PCB vias exhibit significant reflection loss above 10 GHz. In conclusion, this article proposes a novel vertical interconnection for PCBs.\",\"PeriodicalId\":100646,\"journal\":{\"name\":\"IEEE Transactions on Signal and Power Integrity\",\"volume\":\"3 \",\"pages\":\"67-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Power Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505856/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505856/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的垂直导电结构(VeCS),以取代印刷电路板(PCB)上用于信号连接的一般通孔结构。通孔已被广泛用作印刷电路板层间的互连。然而,通孔因其不连续的特性阻抗而存在局限性。VeCS 包含一个由金属结构垂直屏蔽的导电结构,可提供阻抗控制。因此,与一般通孔结构相比,VeCS 具有恒定的特性阻抗,可以获得更好的高速通道信号完整性。本文还提出了用于信号完整性分析的可扩展 VeCS 三维电磁仿真模型。模拟退火和线性回归结果表明,可扩展模型准确地代表了 VeCS。比较了 VeCS 和通孔高达 70 GHz 的电气性能。在 70 GHz 时,VeCS 和通孔的测量插入损耗分别为 35 dB 和 70 dB,因为 PCB 通孔在 10 GHz 以上会表现出明显的反射损耗。总之,本文为印刷电路板提出了一种新型垂直互连技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Vertical Conductive Structure for Printed Circuit Boards and its Scalable Model
This article proposes a new vertical conductive structure (VeCS) to replace the general via structure for signal connection on printed circuit boards (PCBs). Vias have been widely used as interconnects for in-between layers in PCBs. However, vias have limitations due to their discontinuous characteristic impedance. The VeCS consists of a conductive structure shielded vertically by a metal structure, which provides impedance control. Thus, the VeCS has the constant characteristic impedance that can get better signal integrity for the high-speed channel than the general via structure. This article also proposes a scalable 3-D electromagnetic simulation model of the VeCS for signal integrity analysis. Simulated annealing and linear regression revealed that the scalable model accurately represents the VeCS. The electrical performances of a VeCS and a via were compared up to 70 GHz. The measured insertion losses at 70 GHz for the VeCS and the via were 35 dB and 70 dB, respectively, because PCB vias exhibit significant reflection loss above 10 GHz. In conclusion, this article proposes a novel vertical interconnection for PCBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信