{"title":"组合优化问题的解释","authors":"Martin Erwig, Prashant Kumar","doi":"10.1016/j.cola.2024.101272","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a representation for generating explanations for the outcomes of combinatorial optimization algorithms. The two key ideas are (A) to maintain fine-grained representations of the values manipulated by these algorithms and (B) to derive explanations from these representations through merge, filter, and aggregation operations. An explanation in our model presents essentially a high-level comparison of the solution to a problem with a hypothesized alternative, illuminating why the solution is better than the alternative. Our value representation results in explanations smaller than other dynamic program representations, such as traces. Based on a measure for the conciseness of explanations we demonstrate through a number of experiments that the explanations produced by our approach are small and scale well with problem size across a number of different applications.</p></div>","PeriodicalId":48552,"journal":{"name":"Journal of Computer Languages","volume":"79 ","pages":"Article 101272"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explanations for combinatorial optimization problems\",\"authors\":\"Martin Erwig, Prashant Kumar\",\"doi\":\"10.1016/j.cola.2024.101272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a representation for generating explanations for the outcomes of combinatorial optimization algorithms. The two key ideas are (A) to maintain fine-grained representations of the values manipulated by these algorithms and (B) to derive explanations from these representations through merge, filter, and aggregation operations. An explanation in our model presents essentially a high-level comparison of the solution to a problem with a hypothesized alternative, illuminating why the solution is better than the alternative. Our value representation results in explanations smaller than other dynamic program representations, such as traces. Based on a measure for the conciseness of explanations we demonstrate through a number of experiments that the explanations produced by our approach are small and scale well with problem size across a number of different applications.</p></div>\",\"PeriodicalId\":48552,\"journal\":{\"name\":\"Journal of Computer Languages\",\"volume\":\"79 \",\"pages\":\"Article 101272\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Languages\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590118424000157\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Languages","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590118424000157","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Explanations for combinatorial optimization problems
We introduce a representation for generating explanations for the outcomes of combinatorial optimization algorithms. The two key ideas are (A) to maintain fine-grained representations of the values manipulated by these algorithms and (B) to derive explanations from these representations through merge, filter, and aggregation operations. An explanation in our model presents essentially a high-level comparison of the solution to a problem with a hypothesized alternative, illuminating why the solution is better than the alternative. Our value representation results in explanations smaller than other dynamic program representations, such as traces. Based on a measure for the conciseness of explanations we demonstrate through a number of experiments that the explanations produced by our approach are small and scale well with problem size across a number of different applications.