{"title":"基于半经验 DFT 的新型 GS-AGNR (N) FET 电子和量子输运特性研究","authors":"Anshul;Rishu Chaujar","doi":"10.1109/TNANO.2024.3394547","DOIUrl":null,"url":null,"abstract":"In this article, the electronic and quantum transport properties for the bulk configuration of armchair graphene nanoribbons (AGNRs) with varied number of carbon atoms along AGNR width (N) are investigated. The semi-empirical (SE) Density Functional Theory (DFT) approach is used to calculate the band structure, density of states (DOS), and transmission spectrum for the bulk configuration of AGNR. Further, the AGNRs are used in channel material to analyze the performance of field-effect transistors with Gate Stack (GS) architecture. The result shows that the bandgap value is higher for AGNR (N = 4) with a value of 1.98 eV compared to another bulk configuration of AGNRs. In addition to this, AGNR (N = 4) also shows an improved transmission spectrum. Moreover, the transmission spectrum at varied input voltages and projected local density of states (PLDOS) are also analyzed to study the performance of the proposed devices. The parameters mentioned above give a unique idea for evaluating the performance in terms of resonance peaks and electronic structure for device configurations. The off current (I\n<sub>off</sub>\n) is remarkably reduced, and the switching ratio (I\n<sub>on</sub>\n/I\n<sub>off</sub>\n) is significantly improved in GS-AGNR (N = 4) FET compared with other device configurations. Owing to the enhanced switching, this paper highlights GS-AGNR (N = 4) FET as a suitable candidate for low-power applications such as low-power sensors, wireless communication, and medical devices.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"400-407"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Empirical DFT Based Investigation of Electronic and Quantum Transport Properties of Novel GS-AGNR (N) FET\",\"authors\":\"Anshul;Rishu Chaujar\",\"doi\":\"10.1109/TNANO.2024.3394547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the electronic and quantum transport properties for the bulk configuration of armchair graphene nanoribbons (AGNRs) with varied number of carbon atoms along AGNR width (N) are investigated. The semi-empirical (SE) Density Functional Theory (DFT) approach is used to calculate the band structure, density of states (DOS), and transmission spectrum for the bulk configuration of AGNR. Further, the AGNRs are used in channel material to analyze the performance of field-effect transistors with Gate Stack (GS) architecture. The result shows that the bandgap value is higher for AGNR (N = 4) with a value of 1.98 eV compared to another bulk configuration of AGNRs. In addition to this, AGNR (N = 4) also shows an improved transmission spectrum. Moreover, the transmission spectrum at varied input voltages and projected local density of states (PLDOS) are also analyzed to study the performance of the proposed devices. The parameters mentioned above give a unique idea for evaluating the performance in terms of resonance peaks and electronic structure for device configurations. The off current (I\\n<sub>off</sub>\\n) is remarkably reduced, and the switching ratio (I\\n<sub>on</sub>\\n/I\\n<sub>off</sub>\\n) is significantly improved in GS-AGNR (N = 4) FET compared with other device configurations. Owing to the enhanced switching, this paper highlights GS-AGNR (N = 4) FET as a suitable candidate for low-power applications such as low-power sensors, wireless communication, and medical devices.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"400-407\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510477/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10510477/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Semi-Empirical DFT Based Investigation of Electronic and Quantum Transport Properties of Novel GS-AGNR (N) FET
In this article, the electronic and quantum transport properties for the bulk configuration of armchair graphene nanoribbons (AGNRs) with varied number of carbon atoms along AGNR width (N) are investigated. The semi-empirical (SE) Density Functional Theory (DFT) approach is used to calculate the band structure, density of states (DOS), and transmission spectrum for the bulk configuration of AGNR. Further, the AGNRs are used in channel material to analyze the performance of field-effect transistors with Gate Stack (GS) architecture. The result shows that the bandgap value is higher for AGNR (N = 4) with a value of 1.98 eV compared to another bulk configuration of AGNRs. In addition to this, AGNR (N = 4) also shows an improved transmission spectrum. Moreover, the transmission spectrum at varied input voltages and projected local density of states (PLDOS) are also analyzed to study the performance of the proposed devices. The parameters mentioned above give a unique idea for evaluating the performance in terms of resonance peaks and electronic structure for device configurations. The off current (I
off
) is remarkably reduced, and the switching ratio (I
on
/I
off
) is significantly improved in GS-AGNR (N = 4) FET compared with other device configurations. Owing to the enhanced switching, this paper highlights GS-AGNR (N = 4) FET as a suitable candidate for low-power applications such as low-power sensors, wireless communication, and medical devices.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.