具有固有低晶格热导率的 α-MgAgSb 的高冷却和发电性能

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaofan Zhang , Nan Chen , Kaiwei Guo , Qintuo Zhang , Qi Zhao , Jingkun Xu , Hangtian Zhu , Huaizhou Zhao
{"title":"具有固有低晶格热导率的 α-MgAgSb 的高冷却和发电性能","authors":"Xiaofan Zhang ,&nbsp;Nan Chen ,&nbsp;Kaiwei Guo ,&nbsp;Qintuo Zhang ,&nbsp;Qi Zhao ,&nbsp;Jingkun Xu ,&nbsp;Hangtian Zhu ,&nbsp;Huaizhou Zhao","doi":"10.1016/j.mtphys.2024.101451","DOIUrl":null,"url":null,"abstract":"<div><p>α-MgAgSb is a promising near-room temperature thermoelectric material, characterized by its intrinsically low lattice thermal conductivity, a feature attributed to the significant atomic mass contrast and complex crystal structure. In this work, we achieved respective <em>zT</em><sub>avg</sub> values of 0.58 in the temperature range of 150–300 K and 1.22 in the range of 300–550 K for α-MgAgSb, indicating exceptional potential for both cooling and power generation applications. Additionally, through the reduction of cross-sectional size, the stability of MgAgSb/Ag interface was enhanced under high temperature, which is crucial for the practical application of thermoelectric module. To verify the property of α-MgAgSb material, a 7-pair MgAgSb/Bi<sub>2</sub>Te<sub>3</sub> module was fabricated, demonstrating a maximum cooling temperature difference Δ<em>T</em><sub>max</sub> of 60 K at hot-side temperature of 300 K and a power generation efficiency <em>η</em><sub>max</sub> of 7.2 % with Δ<em>T</em> of 275 K. This work paves the way for the application of Mg-based thermoelectric materials.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High cooling and power generation performance of α-MgAgSb with intrinsic low lattice thermal conductivity\",\"authors\":\"Xiaofan Zhang ,&nbsp;Nan Chen ,&nbsp;Kaiwei Guo ,&nbsp;Qintuo Zhang ,&nbsp;Qi Zhao ,&nbsp;Jingkun Xu ,&nbsp;Hangtian Zhu ,&nbsp;Huaizhou Zhao\",\"doi\":\"10.1016/j.mtphys.2024.101451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>α-MgAgSb is a promising near-room temperature thermoelectric material, characterized by its intrinsically low lattice thermal conductivity, a feature attributed to the significant atomic mass contrast and complex crystal structure. In this work, we achieved respective <em>zT</em><sub>avg</sub> values of 0.58 in the temperature range of 150–300 K and 1.22 in the range of 300–550 K for α-MgAgSb, indicating exceptional potential for both cooling and power generation applications. Additionally, through the reduction of cross-sectional size, the stability of MgAgSb/Ag interface was enhanced under high temperature, which is crucial for the practical application of thermoelectric module. To verify the property of α-MgAgSb material, a 7-pair MgAgSb/Bi<sub>2</sub>Te<sub>3</sub> module was fabricated, demonstrating a maximum cooling temperature difference Δ<em>T</em><sub>max</sub> of 60 K at hot-side temperature of 300 K and a power generation efficiency <em>η</em><sub>max</sub> of 7.2 % with Δ<em>T</em> of 275 K. This work paves the way for the application of Mg-based thermoelectric materials.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001275\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001275","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

α-MgAgSb是一种很有前途的近室温热电材料,其特点是固有的低晶格热导率,这归因于显著的原子质量对比和复杂的晶体结构。在这项研究中,α-MgAgSb 在 150-300 K 温度范围内的 zTavg 值分别为 0.58,在 300-550 K 温度范围内的 zTavg 值分别为 1.22,这表明它在制冷和发电应用方面都具有非凡的潜力。此外,通过减小横截面尺寸,MgAgSb/Ag 界面在高温下的稳定性得到了增强,这对于热电模块的实际应用至关重要。为了验证α-MgAgSb 材料的性能,我们制作了一个 7 对 MgAgSb/Bi2Te3 模块,在热侧温度为 300 K 时,最大冷却温差 ΔTmax 为 60 K;在 ΔT 为 275 K 时,发电效率 ηmax 为 7.2 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High cooling and power generation performance of α-MgAgSb with intrinsic low lattice thermal conductivity

α-MgAgSb is a promising near-room temperature thermoelectric material, characterized by its intrinsically low lattice thermal conductivity, a feature attributed to the significant atomic mass contrast and complex crystal structure. In this work, we achieved respective zTavg values of 0.58 in the temperature range of 150–300 K and 1.22 in the range of 300–550 K for α-MgAgSb, indicating exceptional potential for both cooling and power generation applications. Additionally, through the reduction of cross-sectional size, the stability of MgAgSb/Ag interface was enhanced under high temperature, which is crucial for the practical application of thermoelectric module. To verify the property of α-MgAgSb material, a 7-pair MgAgSb/Bi2Te3 module was fabricated, demonstrating a maximum cooling temperature difference ΔTmax of 60 K at hot-side temperature of 300 K and a power generation efficiency ηmax of 7.2 % with ΔT of 275 K. This work paves the way for the application of Mg-based thermoelectric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信