{"title":"蠕变、疲劳和随机振动对 BGA 封装焊点完整性的影响","authors":"Joshua A. Depiver , Sabuj Mallik , Emeka H. Amalu","doi":"10.1016/j.microrel.2024.115415","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs Finite Element Analysis (FEA) to investigate the effects of creep, fatigue, and random vibration on the integrity of solder joints in BGA packages in electronic modules. Evaluating the response of lead-based Sn63Pb37 and lead-free SnAgCu alloy solders (SAC305, SAC387, SAC396, and SAC405) to induced loads - stress, strain, strain energy density, and displacement in the joints is obtained and studied better to understand the mechanism of the joints' degradation. SAC305 and SAC405 are modelled with linear stress-temperature relationships σ = 3.152T–68.167 and σ = 1.543T–34.983, respectively. The magnitude of the strain energy density in the joints is a key failure driver. SAC387 and SAC396 solder joints display lower values of strain energy density and thus have higher durability. Displacement analysis indicates that SAC305 and Sn63Pb37 are prone to deformation-induced failure. SAC387 exhibits the highest fatigue yield stress at 58 MPa, while SAC405 displays the lowest stress at 22 MPa. Analysis of the results of random vibration shows that Sn63Pb37 developed the highest stress at 34.62 MPa and is thus susceptible to stress-induced failure. The robust stress, strain, and strain energy responses of SAC405 and SAC396 provide key insights into improving the mechanical reliability of future electronic devices towards better sustainability.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"157 ","pages":"Article 115415"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026271424000957/pdfft?md5=1e342a648621bd86b2ae1daf4abb2915&pid=1-s2.0-S0026271424000957-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Creep, Fatigue and Random Vibration on the Integrity of Solder Joints in BGA Package\",\"authors\":\"Joshua A. Depiver , Sabuj Mallik , Emeka H. Amalu\",\"doi\":\"10.1016/j.microrel.2024.115415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study employs Finite Element Analysis (FEA) to investigate the effects of creep, fatigue, and random vibration on the integrity of solder joints in BGA packages in electronic modules. Evaluating the response of lead-based Sn63Pb37 and lead-free SnAgCu alloy solders (SAC305, SAC387, SAC396, and SAC405) to induced loads - stress, strain, strain energy density, and displacement in the joints is obtained and studied better to understand the mechanism of the joints' degradation. SAC305 and SAC405 are modelled with linear stress-temperature relationships σ = 3.152T–68.167 and σ = 1.543T–34.983, respectively. The magnitude of the strain energy density in the joints is a key failure driver. SAC387 and SAC396 solder joints display lower values of strain energy density and thus have higher durability. Displacement analysis indicates that SAC305 and Sn63Pb37 are prone to deformation-induced failure. SAC387 exhibits the highest fatigue yield stress at 58 MPa, while SAC405 displays the lowest stress at 22 MPa. Analysis of the results of random vibration shows that Sn63Pb37 developed the highest stress at 34.62 MPa and is thus susceptible to stress-induced failure. The robust stress, strain, and strain energy responses of SAC405 and SAC396 provide key insights into improving the mechanical reliability of future electronic devices towards better sustainability.</p></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"157 \",\"pages\":\"Article 115415\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0026271424000957/pdfft?md5=1e342a648621bd86b2ae1daf4abb2915&pid=1-s2.0-S0026271424000957-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424000957\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424000957","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Creep, Fatigue and Random Vibration on the Integrity of Solder Joints in BGA Package
This study employs Finite Element Analysis (FEA) to investigate the effects of creep, fatigue, and random vibration on the integrity of solder joints in BGA packages in electronic modules. Evaluating the response of lead-based Sn63Pb37 and lead-free SnAgCu alloy solders (SAC305, SAC387, SAC396, and SAC405) to induced loads - stress, strain, strain energy density, and displacement in the joints is obtained and studied better to understand the mechanism of the joints' degradation. SAC305 and SAC405 are modelled with linear stress-temperature relationships σ = 3.152T–68.167 and σ = 1.543T–34.983, respectively. The magnitude of the strain energy density in the joints is a key failure driver. SAC387 and SAC396 solder joints display lower values of strain energy density and thus have higher durability. Displacement analysis indicates that SAC305 and Sn63Pb37 are prone to deformation-induced failure. SAC387 exhibits the highest fatigue yield stress at 58 MPa, while SAC405 displays the lowest stress at 22 MPa. Analysis of the results of random vibration shows that Sn63Pb37 developed the highest stress at 34.62 MPa and is thus susceptible to stress-induced failure. The robust stress, strain, and strain energy responses of SAC405 and SAC396 provide key insights into improving the mechanical reliability of future electronic devices towards better sustainability.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.