{"title":"杂质对一水硫酸锰溶解度和可迁移区宽度的影响","authors":"Sen Yang, Xiaomeng Zhou, Haowen Du, Chuang Xie","doi":"10.1002/crat.202300357","DOIUrl":null,"url":null,"abstract":"<p>Recovering manganese from waste batteries is an important issue to promote the development of new energy. Herein, nickel sulfate and cobalt sulfate, representative impurities in waste battery leachate, are selected to examine their influence on the crystallization thermodynamics and crystal nucleation of manganese sulfate monohydrate. This work assessed alterations in solubility and metastable zone width (MSZW) due to the presence of impurities. The results showed a decrease in manganese sulfate monohydrate solubility in water with increasing impurity concentrations of either nickel sulfate or cobalt sulfate. The effects of initial concentration, heating rate, and impurity concentration on MSZW demonstrated a consistent increase in MSZW as these factors increased. The MSZW data are fitted using the self-consistent Nývlt-like model and the classical 3D nucleation theory model. The results revealed a general increase in the nucleation rate constant, <i>K</i>, with increasing saturation temperature or decreasing nickel sulfate concentration. Conversely, the solid-liquid interface energy, <i>γ</i>, generally decreases with increasing saturation temperature or decreasing nickel sulfate concentration. Based on the influence observed on the interface energy, a possible mechanism is proposed that suggests that impurities inhibit crystal nucleation through adsorption.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Impurities on Solubility and Metastable Zone Width of Manganese Sulfate Monohydrate\",\"authors\":\"Sen Yang, Xiaomeng Zhou, Haowen Du, Chuang Xie\",\"doi\":\"10.1002/crat.202300357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recovering manganese from waste batteries is an important issue to promote the development of new energy. Herein, nickel sulfate and cobalt sulfate, representative impurities in waste battery leachate, are selected to examine their influence on the crystallization thermodynamics and crystal nucleation of manganese sulfate monohydrate. This work assessed alterations in solubility and metastable zone width (MSZW) due to the presence of impurities. The results showed a decrease in manganese sulfate monohydrate solubility in water with increasing impurity concentrations of either nickel sulfate or cobalt sulfate. The effects of initial concentration, heating rate, and impurity concentration on MSZW demonstrated a consistent increase in MSZW as these factors increased. The MSZW data are fitted using the self-consistent Nývlt-like model and the classical 3D nucleation theory model. The results revealed a general increase in the nucleation rate constant, <i>K</i>, with increasing saturation temperature or decreasing nickel sulfate concentration. Conversely, the solid-liquid interface energy, <i>γ</i>, generally decreases with increasing saturation temperature or decreasing nickel sulfate concentration. Based on the influence observed on the interface energy, a possible mechanism is proposed that suggests that impurities inhibit crystal nucleation through adsorption.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300357\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300357","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Effect of Impurities on Solubility and Metastable Zone Width of Manganese Sulfate Monohydrate
Recovering manganese from waste batteries is an important issue to promote the development of new energy. Herein, nickel sulfate and cobalt sulfate, representative impurities in waste battery leachate, are selected to examine their influence on the crystallization thermodynamics and crystal nucleation of manganese sulfate monohydrate. This work assessed alterations in solubility and metastable zone width (MSZW) due to the presence of impurities. The results showed a decrease in manganese sulfate monohydrate solubility in water with increasing impurity concentrations of either nickel sulfate or cobalt sulfate. The effects of initial concentration, heating rate, and impurity concentration on MSZW demonstrated a consistent increase in MSZW as these factors increased. The MSZW data are fitted using the self-consistent Nývlt-like model and the classical 3D nucleation theory model. The results revealed a general increase in the nucleation rate constant, K, with increasing saturation temperature or decreasing nickel sulfate concentration. Conversely, the solid-liquid interface energy, γ, generally decreases with increasing saturation temperature or decreasing nickel sulfate concentration. Based on the influence observed on the interface energy, a possible mechanism is proposed that suggests that impurities inhibit crystal nucleation through adsorption.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing