{"title":"利用有机溶剂稳定固定化脂肪酶高效酶法合成维生素 E 琥珀酸酯","authors":"Wenlin Li, Sen Lin, Dongming Lan, Yonghua Wang","doi":"10.1002/aocs.12847","DOIUrl":null,"url":null,"abstract":"<p>Vitamin E succinate has gained substantial attention as a potential therapeutic agent for cancer treatment due to its biomedical activities. One of the prominent methods of synthesizing vitamin E succinate is through enzymatic processes, which, although advantageous, presents inherent challenges related to optimization, scalability, and particularly, the poor stability of lipases in organic solvents. Our study addresses these challenges by conducting a comprehensive comparative analysis between Lipase UM1 and three other immobilized commercial lipases, demonstrating Lipase UM1's enhanced resistance to organic solvents and its superior efficiency in vitamin E succinate production. Further optimization experiments with Lipase UM1 led to an unprecedented conversion of 99%. Additionally, we scaled the reaction to a proof-of-concept industrial level. The synthesized product was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis, ensuring its quality and consistency. This study validates Lipase UM1 as an efficient catalyst for vitamin E succinate synthesis, offering a promising avenue for industrial production with potential applications in cancer therapy and beyond.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1357-1366"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient enzymatic synthesis of vitamin E succinate using an organic solvent-stable immobilized lipase\",\"authors\":\"Wenlin Li, Sen Lin, Dongming Lan, Yonghua Wang\",\"doi\":\"10.1002/aocs.12847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vitamin E succinate has gained substantial attention as a potential therapeutic agent for cancer treatment due to its biomedical activities. One of the prominent methods of synthesizing vitamin E succinate is through enzymatic processes, which, although advantageous, presents inherent challenges related to optimization, scalability, and particularly, the poor stability of lipases in organic solvents. Our study addresses these challenges by conducting a comprehensive comparative analysis between Lipase UM1 and three other immobilized commercial lipases, demonstrating Lipase UM1's enhanced resistance to organic solvents and its superior efficiency in vitamin E succinate production. Further optimization experiments with Lipase UM1 led to an unprecedented conversion of 99%. Additionally, we scaled the reaction to a proof-of-concept industrial level. The synthesized product was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis, ensuring its quality and consistency. This study validates Lipase UM1 as an efficient catalyst for vitamin E succinate synthesis, offering a promising avenue for industrial production with potential applications in cancer therapy and beyond.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"101 12\",\"pages\":\"1357-1366\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12847\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12847","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
维生素 E 琥珀酸酯因其生物医学活性而成为治疗癌症的潜在药物,受到广泛关注。合成维生素 E 琥珀酸酯的主要方法之一是酶法工艺,这种方法虽然具有优势,但在优化、可扩展性方面存在固有的挑战,特别是脂肪酶在有机溶剂中的稳定性较差。为了应对这些挑战,我们的研究对脂肪酶 UM1 和其他三种固定化商用脂肪酶进行了全面的比较分析,结果表明脂肪酶 UM1 对有机溶剂的耐受性更强,在维生素 E 琥珀酸酯的生产中效率更高。利用脂肪酶 UM1 进行的进一步优化实验使转化率达到了前所未有的 99%。此外,我们还将该反应放大到了概念验证的工业水平。合成产品通过傅立叶变换红外光谱和核磁共振分析进行了验证,确保了其质量和一致性。这项研究验证了脂肪酶 UM1 是合成维生素 E 琥珀酸酯的高效催化剂,为工业化生产提供了一条前景广阔的途径,在癌症治疗等领域具有潜在的应用价值。
Efficient enzymatic synthesis of vitamin E succinate using an organic solvent-stable immobilized lipase
Vitamin E succinate has gained substantial attention as a potential therapeutic agent for cancer treatment due to its biomedical activities. One of the prominent methods of synthesizing vitamin E succinate is through enzymatic processes, which, although advantageous, presents inherent challenges related to optimization, scalability, and particularly, the poor stability of lipases in organic solvents. Our study addresses these challenges by conducting a comprehensive comparative analysis between Lipase UM1 and three other immobilized commercial lipases, demonstrating Lipase UM1's enhanced resistance to organic solvents and its superior efficiency in vitamin E succinate production. Further optimization experiments with Lipase UM1 led to an unprecedented conversion of 99%. Additionally, we scaled the reaction to a proof-of-concept industrial level. The synthesized product was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis, ensuring its quality and consistency. This study validates Lipase UM1 as an efficient catalyst for vitamin E succinate synthesis, offering a promising avenue for industrial production with potential applications in cancer therapy and beyond.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.