{"title":"SOI-MOS 中自热效应的发热机制","authors":"Zheng-Lai Tang;Bing-Yang Cao","doi":"10.1109/JEDS.2024.3393019","DOIUrl":null,"url":null,"abstract":"The development of microelectronic devices to the nanoscale intensifies self-heating challenges, affecting efficiency and durability. Understanding the mechanisms of heat generation at this scale is crucial, yet research extending beyond Joule heat remains limited. This paper simulates the self-heating effect of Silicon-On-Insulator Metal-Oxide-Semiconductor Field Effect Transistors (SOI-MOS) at the nanoscale and researches the characteristic and influence of different heat generation mechanisms, including the Joule heat, recombination heat and Peltier-Thomson heat. Our results provide a detailed two-dimensional distribution and intensity of various heat generation mechanisms within the silicon channel layer. It is found that Peltier-Thomson heat has the same magnitude as Joule heat at the nanoscale, and exhibits an alternating distribution pattern of hot and cold sources under the gate. But recombination heat is relatively negligible. The analysis of the influence of different heat mechanisms emphasizes the important role of Joule heat. While the offset effect limits the impact of Peltier-Thomson heat, its significance to device thermal performance should not be ignored. More importantly, this study investigates the impact of characteristic size on different heat generation mechanisms, revealing the size dependence of Peltier-Thomson heat.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508189","citationCount":"0","resultStr":"{\"title\":\"Heat Generation Mechanisms of Self-Heating Effects in SOI-MOS\",\"authors\":\"Zheng-Lai Tang;Bing-Yang Cao\",\"doi\":\"10.1109/JEDS.2024.3393019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of microelectronic devices to the nanoscale intensifies self-heating challenges, affecting efficiency and durability. Understanding the mechanisms of heat generation at this scale is crucial, yet research extending beyond Joule heat remains limited. This paper simulates the self-heating effect of Silicon-On-Insulator Metal-Oxide-Semiconductor Field Effect Transistors (SOI-MOS) at the nanoscale and researches the characteristic and influence of different heat generation mechanisms, including the Joule heat, recombination heat and Peltier-Thomson heat. Our results provide a detailed two-dimensional distribution and intensity of various heat generation mechanisms within the silicon channel layer. It is found that Peltier-Thomson heat has the same magnitude as Joule heat at the nanoscale, and exhibits an alternating distribution pattern of hot and cold sources under the gate. But recombination heat is relatively negligible. The analysis of the influence of different heat mechanisms emphasizes the important role of Joule heat. While the offset effect limits the impact of Peltier-Thomson heat, its significance to device thermal performance should not be ignored. More importantly, this study investigates the impact of characteristic size on different heat generation mechanisms, revealing the size dependence of Peltier-Thomson heat.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508189/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10508189/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Heat Generation Mechanisms of Self-Heating Effects in SOI-MOS
The development of microelectronic devices to the nanoscale intensifies self-heating challenges, affecting efficiency and durability. Understanding the mechanisms of heat generation at this scale is crucial, yet research extending beyond Joule heat remains limited. This paper simulates the self-heating effect of Silicon-On-Insulator Metal-Oxide-Semiconductor Field Effect Transistors (SOI-MOS) at the nanoscale and researches the characteristic and influence of different heat generation mechanisms, including the Joule heat, recombination heat and Peltier-Thomson heat. Our results provide a detailed two-dimensional distribution and intensity of various heat generation mechanisms within the silicon channel layer. It is found that Peltier-Thomson heat has the same magnitude as Joule heat at the nanoscale, and exhibits an alternating distribution pattern of hot and cold sources under the gate. But recombination heat is relatively negligible. The analysis of the influence of different heat mechanisms emphasizes the important role of Joule heat. While the offset effect limits the impact of Peltier-Thomson heat, its significance to device thermal performance should not be ignored. More importantly, this study investigates the impact of characteristic size on different heat generation mechanisms, revealing the size dependence of Peltier-Thomson heat.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.