Yuanyuan Liu , Zhaoyi Yang , Miao Cai , Yanwen Wang , Xiaoli Liu , Hexing Tong , Yuhang Peng , Yue Lou , Zhu Li
{"title":"ATST-Net:识别帕金森病上下肢早期症状的方法","authors":"Yuanyuan Liu , Zhaoyi Yang , Miao Cai , Yanwen Wang , Xiaoli Liu , Hexing Tong , Yuhang Peng , Yue Lou , Zhu Li","doi":"10.1016/j.medengphy.2024.104171","DOIUrl":null,"url":null,"abstract":"<div><p>Bradykinesia, a core symptom of motor disorders in Parkinson's disease (PD), is a major criterion for screening early PD patients in clinical practice. Currently, many studies have proposed automatic assessment schemes for bradykinesia in PD. However, existing schemes suffer from problems such as dependence on professional equipment, single evaluation tasks, difficulty in obtaining samples and low accuracy. This paper proposes a manual feature extraction- and neural network-based method to evaluate bradykinesia, effectively solving the problem of a small sample size. This method can automatically assess finger tapping (FT), hand movement (HM), toe tapping (TT) and bilateral foot sensitivity tasks (LA) through a unified model. Data were obtained from 120 individuals, including 93 patients with Parkinson's disease and 27 age- and sex-matched normal controls (NCs). Manual feature extraction and Attention Time Series Two-stream Networks (ATST-Net) were used for classification. Accuracy rates of 0.844, 0.819, 0.728, and 0.768 were achieved for FT, HM, TT, and LA, respectively. To our knowledge, this study is the first to simultaneously evaluate the upper and lower limbs using a unified model that has significant advantages in both model training and transfer learning.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATST-Net: A method to identify early symptoms in the upper and lower extremities of PD\",\"authors\":\"Yuanyuan Liu , Zhaoyi Yang , Miao Cai , Yanwen Wang , Xiaoli Liu , Hexing Tong , Yuhang Peng , Yue Lou , Zhu Li\",\"doi\":\"10.1016/j.medengphy.2024.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bradykinesia, a core symptom of motor disorders in Parkinson's disease (PD), is a major criterion for screening early PD patients in clinical practice. Currently, many studies have proposed automatic assessment schemes for bradykinesia in PD. However, existing schemes suffer from problems such as dependence on professional equipment, single evaluation tasks, difficulty in obtaining samples and low accuracy. This paper proposes a manual feature extraction- and neural network-based method to evaluate bradykinesia, effectively solving the problem of a small sample size. This method can automatically assess finger tapping (FT), hand movement (HM), toe tapping (TT) and bilateral foot sensitivity tasks (LA) through a unified model. Data were obtained from 120 individuals, including 93 patients with Parkinson's disease and 27 age- and sex-matched normal controls (NCs). Manual feature extraction and Attention Time Series Two-stream Networks (ATST-Net) were used for classification. Accuracy rates of 0.844, 0.819, 0.728, and 0.768 were achieved for FT, HM, TT, and LA, respectively. To our knowledge, this study is the first to simultaneously evaluate the upper and lower limbs using a unified model that has significant advantages in both model training and transfer learning.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000729\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000729","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
ATST-Net: A method to identify early symptoms in the upper and lower extremities of PD
Bradykinesia, a core symptom of motor disorders in Parkinson's disease (PD), is a major criterion for screening early PD patients in clinical practice. Currently, many studies have proposed automatic assessment schemes for bradykinesia in PD. However, existing schemes suffer from problems such as dependence on professional equipment, single evaluation tasks, difficulty in obtaining samples and low accuracy. This paper proposes a manual feature extraction- and neural network-based method to evaluate bradykinesia, effectively solving the problem of a small sample size. This method can automatically assess finger tapping (FT), hand movement (HM), toe tapping (TT) and bilateral foot sensitivity tasks (LA) through a unified model. Data were obtained from 120 individuals, including 93 patients with Parkinson's disease and 27 age- and sex-matched normal controls (NCs). Manual feature extraction and Attention Time Series Two-stream Networks (ATST-Net) were used for classification. Accuracy rates of 0.844, 0.819, 0.728, and 0.768 were achieved for FT, HM, TT, and LA, respectively. To our knowledge, this study is the first to simultaneously evaluate the upper and lower limbs using a unified model that has significant advantages in both model training and transfer learning.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.