{"title":"狭窄的左冠状动脉欧拉-拉格朗日密集离散相模型 (DDPM) 与单相模型的比较","authors":"Ziba Valizadeh, Mehrzad Shams, Hossein Dehghani","doi":"10.1016/j.medengphy.2024.104164","DOIUrl":null,"url":null,"abstract":"<div><p>In computational fluid dynamic studies related to blood flow, investigating the behavior of blood particles is crucial, especially red blood cells as they constitute a significant proportion of blood particles. Additionally, studying red blood cell movements is necessary, especially in stenotic artery geometries. A new multiphase scheme was utilized to demonstrate the effect of red blood cells on hemodynamics in complex coronary arteries and investigate the consequence of their motion. To investigate the effect of red blood cell movement on flow, the dense discrete phase model (DDPM) was used. This simulation was performed in 3D coronary arteries with different degrees of stenosis, utilizing blood pressure as inlet and outlet boundary conditions while assuming the arterial wall to be rigid. The model prediction shows good agreement with experimental data. Velocity values were comparable in both single-phase and two-phase flow simulations, but the shear stress in two-phase modeling had higher values. In the two-phase DDPM modeling, the recirculation areas indicated a higher probability of atherosclerosis plaque re-formation in the pre-stenosis area compared to the stenosis and post-stenosis areas. The DDPM model was found to be more effective in obtaining shear stress values in the artery. Additionally, this model provides good results compared to the single-phase model in investigating the movement of particles along the artery as well as recirculation areas that lead to the deposition of particles.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"128 ","pages":"Article 104164"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eulerian- lagrangian dense discrete phase model (DDPM) of stenotic LAD coronary arteries in comparison with single phase modeling\",\"authors\":\"Ziba Valizadeh, Mehrzad Shams, Hossein Dehghani\",\"doi\":\"10.1016/j.medengphy.2024.104164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In computational fluid dynamic studies related to blood flow, investigating the behavior of blood particles is crucial, especially red blood cells as they constitute a significant proportion of blood particles. Additionally, studying red blood cell movements is necessary, especially in stenotic artery geometries. A new multiphase scheme was utilized to demonstrate the effect of red blood cells on hemodynamics in complex coronary arteries and investigate the consequence of their motion. To investigate the effect of red blood cell movement on flow, the dense discrete phase model (DDPM) was used. This simulation was performed in 3D coronary arteries with different degrees of stenosis, utilizing blood pressure as inlet and outlet boundary conditions while assuming the arterial wall to be rigid. The model prediction shows good agreement with experimental data. Velocity values were comparable in both single-phase and two-phase flow simulations, but the shear stress in two-phase modeling had higher values. In the two-phase DDPM modeling, the recirculation areas indicated a higher probability of atherosclerosis plaque re-formation in the pre-stenosis area compared to the stenosis and post-stenosis areas. The DDPM model was found to be more effective in obtaining shear stress values in the artery. Additionally, this model provides good results compared to the single-phase model in investigating the movement of particles along the artery as well as recirculation areas that lead to the deposition of particles.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"128 \",\"pages\":\"Article 104164\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000651\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000651","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Eulerian- lagrangian dense discrete phase model (DDPM) of stenotic LAD coronary arteries in comparison with single phase modeling
In computational fluid dynamic studies related to blood flow, investigating the behavior of blood particles is crucial, especially red blood cells as they constitute a significant proportion of blood particles. Additionally, studying red blood cell movements is necessary, especially in stenotic artery geometries. A new multiphase scheme was utilized to demonstrate the effect of red blood cells on hemodynamics in complex coronary arteries and investigate the consequence of their motion. To investigate the effect of red blood cell movement on flow, the dense discrete phase model (DDPM) was used. This simulation was performed in 3D coronary arteries with different degrees of stenosis, utilizing blood pressure as inlet and outlet boundary conditions while assuming the arterial wall to be rigid. The model prediction shows good agreement with experimental data. Velocity values were comparable in both single-phase and two-phase flow simulations, but the shear stress in two-phase modeling had higher values. In the two-phase DDPM modeling, the recirculation areas indicated a higher probability of atherosclerosis plaque re-formation in the pre-stenosis area compared to the stenosis and post-stenosis areas. The DDPM model was found to be more effective in obtaining shear stress values in the artery. Additionally, this model provides good results compared to the single-phase model in investigating the movement of particles along the artery as well as recirculation areas that lead to the deposition of particles.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.