联合优化相移和任务卸载,实现超越 6G 通信的 RIS 辅助多址边缘计算

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daniar Estu Widiyanti, Krisma Asmoro, Soo Young Shin
{"title":"联合优化相移和任务卸载,实现超越 6G 通信的 RIS 辅助多址边缘计算","authors":"Daniar Estu Widiyanti,&nbsp;Krisma Asmoro,&nbsp;Soo Young Shin","doi":"10.1016/j.icte.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Beyond 6G services and applications demand high and efficient processing capacity due to the massive connectivity of users equipment (UEs). However, the high computational capability and energy consumption of UEs are limited, which becomes a main challenge to overcome. Multi-access edge computing (MEC) has recently been studied widely as it can potentially assist complex tasks executed at UEs. Furthermore, several techniques have been proposed to optimize task offloading among users. Thus, another challenge in MEC is emerging due to the fact that mobile users do not always have a line-of-sight (LoS) to the base station (BS) due to the blocking object. Therefore, it can affect users data rate and result in incremental energy consumption. This research introduces the concept of reconfigurable intelligence surfaces (RIS) to support multiple-input-single-output (MISO) base stations (BS) in both uplink (UL) and downlink (DL) using BCD algorithms. While previous studies concentrate on enhancing task offloading and neglecting inter-user interference, this study suggests an optimization approach for UL and DL data rates, as well as minimizing task offloading delays. The results indicate that optimizing task placement, phase shift, and precoding can reduce the duration of task offloading.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 620-625"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000419/pdfft?md5=3ad3f653a2f1f8aa864d3acf87e8b4c4&pid=1-s2.0-S2405959524000419-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Joint optimization of phase shift and task offloading for RIS-assisted multi-access edge computing in beyond 6G communication\",\"authors\":\"Daniar Estu Widiyanti,&nbsp;Krisma Asmoro,&nbsp;Soo Young Shin\",\"doi\":\"10.1016/j.icte.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beyond 6G services and applications demand high and efficient processing capacity due to the massive connectivity of users equipment (UEs). However, the high computational capability and energy consumption of UEs are limited, which becomes a main challenge to overcome. Multi-access edge computing (MEC) has recently been studied widely as it can potentially assist complex tasks executed at UEs. Furthermore, several techniques have been proposed to optimize task offloading among users. Thus, another challenge in MEC is emerging due to the fact that mobile users do not always have a line-of-sight (LoS) to the base station (BS) due to the blocking object. Therefore, it can affect users data rate and result in incremental energy consumption. This research introduces the concept of reconfigurable intelligence surfaces (RIS) to support multiple-input-single-output (MISO) base stations (BS) in both uplink (UL) and downlink (DL) using BCD algorithms. While previous studies concentrate on enhancing task offloading and neglecting inter-user interference, this study suggests an optimization approach for UL and DL data rates, as well as minimizing task offloading delays. The results indicate that optimizing task placement, phase shift, and precoding can reduce the duration of task offloading.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 620-625\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000419/pdfft?md5=3ad3f653a2f1f8aa864d3acf87e8b4c4&pid=1-s2.0-S2405959524000419-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000419\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000419","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于用户设备(UE)的大规模连接,超越 6G 的服务和应用需要高效的处理能力。然而,UE 的高计算能力和能耗受到限制,这成为需要克服的主要挑战。多接入边缘计算(MEC)最近得到了广泛的研究,因为它有可能为在 UE 上执行的复杂任务提供帮助。此外,还提出了几种技术来优化用户之间的任务卸载。因此,MEC 面临的另一个挑战是,由于遮挡物的存在,移动用户与基站(BS)的视线(LoS)并不总是一致。因此,这会影响用户的数据传输速率,并导致能耗增加。本研究引入了可重构智能面(RIS)的概念,利用 BCD 算法在上行链路(UL)和下行链路(DL)中支持多输入-单输出(MISO)基站(BS)。以往的研究主要集中在增强任务卸载和忽略用户间干扰上,而本研究则提出了一种针对上行和下行数据速率以及最小化任务卸载延迟的优化方法。结果表明,优化任务放置、相移和预编码可以缩短任务卸载的持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint optimization of phase shift and task offloading for RIS-assisted multi-access edge computing in beyond 6G communication

Beyond 6G services and applications demand high and efficient processing capacity due to the massive connectivity of users equipment (UEs). However, the high computational capability and energy consumption of UEs are limited, which becomes a main challenge to overcome. Multi-access edge computing (MEC) has recently been studied widely as it can potentially assist complex tasks executed at UEs. Furthermore, several techniques have been proposed to optimize task offloading among users. Thus, another challenge in MEC is emerging due to the fact that mobile users do not always have a line-of-sight (LoS) to the base station (BS) due to the blocking object. Therefore, it can affect users data rate and result in incremental energy consumption. This research introduces the concept of reconfigurable intelligence surfaces (RIS) to support multiple-input-single-output (MISO) base stations (BS) in both uplink (UL) and downlink (DL) using BCD algorithms. While previous studies concentrate on enhancing task offloading and neglecting inter-user interference, this study suggests an optimization approach for UL and DL data rates, as well as minimizing task offloading delays. The results indicate that optimizing task placement, phase shift, and precoding can reduce the duration of task offloading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信